ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

□ стварэнне псеўдагістарычных аб'ектаў, якія вядуць да скажэння гісторыі і фарміравання памылковых уяўленняў.

Для пераадолення дадзеных праблем і рэалізацыі вялікага патэнцыяла помнікаў гісторыі ў правядзенні вучэбнай, ідэалагічнай і выхаваўчай работы з моладдзю ўзнікае патрэба правядзення працы па папулярызацыі дадзеных аб'ектаў.

Формы правядзення такой работы могуць быць наступныя:

- 1. Індывідуальныя заданні з мэтай пошука і апісання пэўнага аб'екта. На прыклад, заданне знайсці помнік на месцы правядзення партызанскага параду ў Мінску 17 ліпеня 1944 г (вул. Лодачная) і апісаць гісторыю гэтай падзеі. Заданні могуць давацца з улікам роднай мясцовасці студэнтаў.
- 2. Напісанне рэфератаў і падрыхтоўка электронных прэзентацый студэнтамі ў межах дысцыплін "Гісторыка-культурная і духоўная спадчына беларускага народа" і "Гісторыя Беларусі ў кантэксце еўрапейскай цывілізацыі".
- 3. Правядзенне па-за аўдыторных мерапрыемстваў экскурсій, акцый па добраўладкаванню пэўных аб'ектаў (помнікаў, пахаванняў і г.д.)

Такім чынам, можна адзначыць, што роля сацыяльна-гуманітарных дысцыплін у сучаснай сістэме адукацыі вызначаецца не толькі ў фарміраванні агульных кампетэнцый спецыяліста, але і ў стварэнні ўстойлівых вобразаў гістарычнай памяці, якая з'яўляецца галоўным чыннікам самаідэнтыфікацыі народа і адным з пастулатаў нацыянальнай бяспекі.

Список использованной литературы

- 1. Концепция национальной безопасности Республики РБ: утверждена Указом Президента Республики РБ № 575 от 9 ноября 2010 года. Минск: «Белорусский дом печати», 2011. 48 с.
- 2. Паноў, С.В. Ставарэнне вобразаў гістарычных асоб як кампанента гістарычнай памяці (дыдактычны аспект) / С.В. Паноў // Роль личности в истории: реальность и проблемы изучения: науч. сб. (по материалам 1-й Международной научно-практической Интернет-конференции) / редкол. В. Н. Сидорцов (отв. ред.) [и др.]. Минск: БГУ, 2011. С. 166–171.
- 3. "Аб ахове гісторыка–культурнай спадчыны Рэспублікі РБ" [Электронный ресурс]: Закон Республики РБ от 9 января 2006 г. №98–3 // Правовой портал Левоневского В.С. Режим доступа: http://pravo.levonevsky.org/bazaby/zakon/text78/index.htm. Дата доступа: 17.02.2017.

УДК 631.173

Назарова Я. А., Жилич С.В., Галенюк Г.А.

Белорусский государственный аграрный технический университет, г. Минск

ПРОЕКТИРОВАНИЕ 3D МОДЕЛЕЙ ДЕТАЛЕЙ ТИПА «ВАЛ» ПРИ ПОМОЩИ АКТУАЛЬНЫХ ГРАФИЧЕСКИХ СИСТЕМ

Изучение инженерной графики в процессе подготовки специалистов агротехнического профиля в вузе происходит при изучении материала в виде лекций и практических занятий с помощью методических пособий, примеров чертежей, специализированных программ.

Основной задачей при изучении дисциплины является обеспечение качества графической подготовки специалистов, формирование их профессиональной компетентности, компьютерной грамотности.

Изучаемый материал должен быть актуальным и полезным в дальнейшей профессиональной деятельности будущего специалиста, например, для инженера-технолога, инженера по метрологии, стандартизации и сертификации.

Нынешние учебно-методические пособия чаще всего предлагают простейший материал, не позволяющий сформировать у студентов целостного представления о технологии обработки объектов компьютерной графики и о применении полученных знаний и умений по компьютерной графике в сфере будущей профессиональной деятельности. Ввиду вышесказанного в качестве программной поддержки разделов компьютерной графики для студентов различных технических специальностей были выбраны следующие программные продукты: графические системы AutoCAD – 12, КОМПАС - 3D – V12, V14.

Программа Компас-3D служит для автоматизированного проектирования и создания документаций стандарта ЕСКД и СПДС.

Основные компоненты КОМПАС-3D — собственно система трёхмерного моделирования, универсальная система автоматизированного 2D-проектирования КОМПАС-График, и модуль проектирования спецификаций и текстовый редактор. Все они легки в освоении, имеют русскоязычные интерфейс и справочную систему.

Ключевой особенностью продукта является использование собственного математического ядра и параметрических технологий, разработанных специалистами АСКОН.

Базовые возможности системы включают в себя функционал, который позволяет спроектировать изделие любой степени сложности в 3D, а потом оформить на это изделие комплект документации, необходимый для его изготовления в соответствии с действующими стандартами (ГОСТ, СТП и др.).

Секция 5: ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ПОДГОТОВКИ СПЕЦИАЛИСТОВ ДЛЯ АПК

По умолчанию КОМПАС-3D поддерживает экспорт/импорт наиболее популярных форматов моделей, за счёт чего обеспечивается интеграция с различными CAD/CAM/CAE пакетами.

Базовая функциональность продукта легко расширяется за счёт различных приложений, дополняющих функционал КОМПАС-3D эффективным инструментарием для решения специализированных инженерных задач. Например, приложения для проектирования трубопроводов, металлоконструкций, различных деталей машин позволяют большую часть действий выполнять автоматически, сокращая общее время разработки проекта в несколько раз.

Модульность системы позволяет пользователю самому определить набор необходимых ему приложений, которые обеспечивают только востребованную функциональность.

Рассмотрим работу системы КОМПАС-3D на примере построения модели вала-шестерни.

Для создания модели вала или шестерни, в документе деталь, активировать библиотеку Валы и механические передачи 3D (рисунок 1).

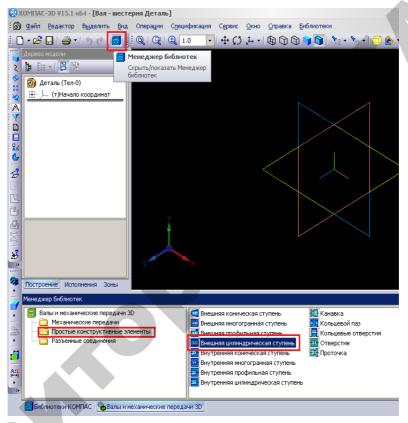


Рисунок 1 – Подключение библиотеки «Валы и механические передачи 3D».

Библиотека представляет собой ориентированную на конкретную задачу подсистему автоматизированного проектирования, которая после выполнения проектных расчетов формирует готовые конструкторские документы или их комплекты.

Указав плоскость и параметры цилиндрической ступени, создаем вал (рисунок 2).

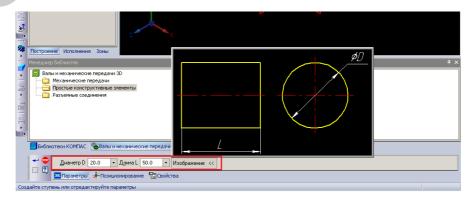


Рисунок 2 – Указание плоскости и настройка параметров цилиндрической ступени.

ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

Далее, надо приступить к созданию шестерни, указать плоскость и настроить параметры (таблица 1). При необходимости выполнить расчёт зубчатого зацепления.

TD ~ 1			U
Таблина I —	(озлание шестерни	указание плоскости и н	настройка параметров
т иолици т	создание шестерии	y kasamine mnockocim m i	ide i politid i idpunici pob

Параметр	Значение	
Модуль	5	
Число зубьев	32	
Угол наклона	15 ° 00' 00"	
Диаметр вала	175.644	
Ширина венца	60	
Коэффициент смещения	0.38	

В результате получится вал – шестерня с частично построенным зубчатым венцом и профилем зуба (рисунок 3).

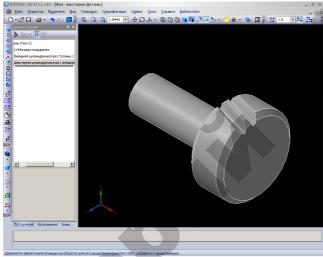


Рисунок – 3. Вал-шестерня, модель

Проектирование машиностроительных и приборостроительных изделий накладывает высокие требования к используемому инструменту. КОМПАС-3D соответствует самым современным требованиям. машиностроительных изделий любой сложности и в соответствии с самыми передовыми методиками проектирования.

Список использованной литературы

- 1. Мокрецова Л.О. Применение Компас 3D для решения задач по начертательной геометрии. / Изд-во МИСиС. УМП, 2008.
- 2. Габидулин В.М. Трехмерное моделирование в AutoCAD. / ДМК Пресс,2011.

УДК 378. 663. 09

Нехайчик А.А.

Белорусский государственный аграрный технический университет, г. Минск

ИНТЕГРАЦИЯ ХИМИЧЕСКИХ ЗНАНИЙ СТУДЕНТОВ ИНЖЕНЕРНЫХ АГРАРНЫХ СПЕЦИАЛЬНОСТЕЙ ПРИ ИЗУЧЕНИИ СПЕЦИАЛЬНЫХ ДИСЦИПЛИН

Вопрос об интеграции химических знаний в учебном процессе сохраняет свою актуальность в течение последних лет. Связан он в первую очередь с интегративными процессами, характерными для развития всего общества в целом, которые в последнее время приобретают очень яркую окраску. В образовательном процессе этот вопрос заключается в том, насколько грамотного специалиста получит та или иная область народного хозяйства. В условиях сельскохозяйственного вуза нужно подготовить специалиста-агрария, который связывал бы технические науки с естественнонаучным циклом. Вот почему так важно привлечь внимание к интеграции химических знаний с инженерными дисциплинами [1].

Одним из таких взаимодействий химических знаний являются основы электрохимии. В Белорусском государственном аграрном техническом университете электрохимические процессы, которые используются в