ные характеристики должностей работников сельского хозяйства»» (зарегистрирован в Минюсте России 15 марта 2012 г. № 23484).

УДК 636.085.55:636.034

Буряков Н.П., доктор биол. наук, профессор **Прохоров Е.О.**, аспирант **Прохоров А.О.**, студент РГАУ-МСХА имени К.А. Тимирязева, г. Москва, Российская Федерация

ПРОДУКТИВНОСТЬ И ПОКАЗАТЕЛИ КАЧЕСТВА МОЛОКА КОРОВ ПРИ ВКЛЮЧЕНИИ ЗЕРНА БЕЛОГО ЛЮПИНА В СОСТАВ КОМБИКОРМОВ

Продуктивность жвачных животных зависит от обеспеченности рационов достаточным количеством полноценного протеина, которая определяется общим поступлением и составом аминокислот в кишечнике и их дальнейшим всасыванием. В то же время белок или корма, богатые им, являются наиболее дорогими и дефицитными в питании жвачных. Особая важность заключается в нормировании протеинового питания животных, так как избыток протеина ведет к его бессмысленным потерям. При дефиците протеина ухудшается использование кормов и понижается продуктивность животных.

Белки в организме животных выполняют разнообразные функции, одной из таких функций является каталитическая, выполняющая все химические реакции обмена веществ, распада одних соединений и синтез других. В настоящее время остро стоит вопрос увеличения молочной продуктивности коров, улучшения качества полученного молока и проблемы воспроизводства стада. Одним из главных факторов является обеспечение животного питательными веществами, реализуемое через кормление.

Для высокопродуктивных коров, наряду с белковым, особую значимость имеют и вопросы аминокислотного питания при одинаковом содержании в рационе протеина и его фракций, молочная продуктивность и эффективность использования доступного белка будет зависеть от сбалансированности смеси аминокислот, поступающей в кровь из пищеварительного тракта[2,5].

Наиболее дефицитным и дорогостоящим белковым кормом является соевый шрот. Большое количество соевого шрота импортируется в Россию, поэтому важная роль отводится зернобобовым культурам (горох, люпин, кормовые бобы) отечественного производства. Люпин является очень неприхотливым растением к почвенным условиям и имеет высокую урожайность зеленой массы и семян с высоким содержанием протеина.

По существующим нормативам допускается введение в состав комбикормов для коров зерна люпина содержащих алкалоиды не более 10%. Люпин сорта Дега является безалкалоидным[1,3,4].

Научно-хозяйственный опыт по изучению эффективности использования зерна белого люпина в кормлении высокопродуктивных коров был проведен в ФГУП «Красная Пойма» Луховицкого района Московской области.

Таблица 1. Схема (n=1)

Группа								
1 – контрольная	2 – опытная	3 – опытная	4 – опытная					
Основной рацион	OP+KK (18%	ОР+КК (24%	OP+KK (30%					
(ОР)+Комбикорм-	зерна белого	зерна белого	зерна белого лю-					
концентрат, питатель-	люпина в соста-	люпина в со-	пина в составе					
ностью 11,2 МДж,	ве комбикорма)	ставе комби-	комбикорма)					
17% СП–(КК)		корма)						

Опыт проведен на коровах черно-пестрой породы из числа молодых (2—3 лактации) глубокостельных животных (9 мес. стельности) по принципу пар-аналогов с учетом происхождения, живой массы, молочной продуктивности за предыдущую лактацию и возраста в отелах. Коровы контрольной группы получали хозяйственный рацион, кг: пивная дробина 15, сенаж люцерны 13,3, силос кукурузный 20, сено люцерновое, комбикорм 15,9, минеральные корма — вволю. Общая питательность рациона соответствовала нормам ВИЖа (2003 г.) на получение среднесуточного удоя 40 кг с учетом раздоя. Энергетическая ценность комбикорма в контрольной группе составляла 11,1 МДж/кг обменной энергии и 17% сырого протеина. Животным 2, 3, 4 подопытных групп был введен в состав комбикорма зерно белого люпина в количестве 18, 24, 30% соответственно, при исключении других белковых концентратов (соевый шрот, жмых рапсовый), но сохранив при этом энергетическую и протеиновую питательность комбикорма на уровне кон-

трольной группы (Таблица 1). Экспериментальные данные обрабатывали методом математической статистики по Н.А. Плохинскому, (1969) и Е.К. Меркурьевой, (1970) с использованием стандартного пакета статистического анализа Microsoft Exsel-2007.

Из данных по аминокислотному составу белого люпина (Таблица 2), полученных в лаборатории Evonik следует, что сорт Дега, скармливаемый, подопытным животным не уступает по большинству показателей белому люпину, выращенному в других странах мира. Так, содержание цистина и аргинина в белке люпина сорта Дега сопоставимо с этими же показателями в люпине, выращенном в Чили. Процент метионина в протеине сорта Дега находится на уровне таких стран как Польша, Германия, Австралия и Англия, но несколько уступает по содержанию лизина и триптофана. В сорте Дега содержится суммарно аминокислот больше, чем в зерне белого люпина в среднем по России на 4,33%.

Таблица 2 Сравнительный аминокислотный состав зерна белого люпина, %

	Страна						
Аминокислота	Россия, (n=13)	Чили (n=41)	Англия (n=13)	Австралия (n=115)	Германия (n=52)	Польша (n=24)	Сорт Дега (n=3)
Лизин	1,63	1,95	1,72	1,66	1,49	1,69	1,64
Метионин	0,23	0,26	0,21	0,21	0,20	0,21	0,22
Цистин	0,56	0,63	0,71	0,49	0,47	0,59	0,63
Метионин + Цистин	0,79	0,89	0,93	0,70	0,67	0,80	0,85
Треонин	1,25	1,40	1,17	1,17	1,06	1,13	1,21
Триптофан	0,27	0,29	0,28	0,30	0,27	0,28	0,25
Аргинин	3,45	4,45	3,82	3,77	3,30	3,86	4,03
Изолейцин	1,50	1,69	1,40	1,36	1,24	1,37	1,47
Лейцин	2,52	2,84	2,67	2,36	2,15	2,46	2,59
Валин	1,41	1,55	1,31	1,33	1,20	1,30	1,38
Гистидин	0,79	0,95	0,95	0,93	0,82	0,94	0,83
Фенилаланин	1,37	1,56	1,42	1,34	1,22	1,35	1,38
Суммарно по незаменимым аминокислотам	14,98	17,57	15,66	14,92	13,42	15,80	15,63

Продуктивность животных в ходе эксперимента контролировали ежемесячно посредством контрольных доек с одновременным измерением жира и белка в молоке в соответствии с требованиями Федерального закона Российской Федерации от 12 июня $2008~\mathrm{r.}~N~88-\Phi3$ «Технический регламент на молоко и молочную продукцию».

Таблица 3. Молочная продуктивность подопытных коров, кг (n=7)

П	Группа					
Показатель	1-контрольная	2-опытная	3-опытная	4-опытная		
Среднесуточный удой молока нату- ральной жирности	27,3±0,48	28,4 ±0,48	28,9±0,77	28,1±0,58		
Удой за лактацию	8362,9±146,5	8703,0±146,5	8838,71±235,6	8252,0±315,7		
в % к контрольной	100	104,07	105,69	98,67		
Содержание жира, %	4,21±0,03	4,21±0,02	4,27±0,01	4,22±0,01		
Содержание белка, %	3,36±0,02	3,41±0,03	3,52±0,01*	3,40±0,01		
Удой молока жирно- стью 4%	8619,2±146,1	8891,5±160,5	9079,2±244,4	8365,9±312,1		
Среднесуточный удой молока 4%	28,2±0,48	29,1±0,61	29,7±0,79	29,1±0,40		
Продукция молочно- го жира	351,6±6,04	365,6±7,02	375,7±10,45	346,3±13,33		
в % к контрольной	100	103,98	106,86	98,5		
Продукция молочо белка	278,7±5,56	294,8±5,62	310,2±8,56*	279,7±11,35		
в % к контрольной	100	105,77	111,30	100,36		

Примечание: * Разность достоверна по отношению к контрольной группе при P < 0.05

Следует отметить, что включение 30% зерна белого люпина в состав комбикорма не оказало существенного влияния на молочную продуктивность и качество молока (содержание жира, белка). За период научно-хозяйственного опыта от животных контрольной группы было получено 8362,9 кг молока натуральной жирности, коров 3-й опытной группы — на 5,69 % больше (8838,71 кг). Со-

держание жира в молоке у животных 1 контрольной и 4 опытной групп было на одном уровне 4,21%, максимальным он был у коров 3-й опытной группы — 4,27 %. Это, в свою очередь, оказало влияние на содержание молочного жира в молоке коров за период опыта. Так, с молоком коров 1-й контрольной группы получено 351,6 кг жира, а от животных, получавших 24% зерна белого люпина в составе комбикорма, этот показатель составил 375,7 кг, что на 6,86 % выше контроля. Содержание белка в молоке и выход продукции молочного белка был достоверно выше у животных 3 опытной группы по сравнению с аналогами 1 контрольной группы.

- 1. Включение в основной рацион комбикорма с 24% зерна белого люпина сорта Дега привело к достоверному увеличению содержания белка в молоке и составило 3,52% против 3,36% в контроле(Р<0,05). Выход молочного белка в этой группе был выше на 11,3%, чем у аналогов в контрольной группе.
- 2. Скармливание рациона, содержащего в составе комбикорма 24% зерна белого люпина, способствовало получению максимального удоя за лактацию на 5,69% однако разность не достоверна по сравнению с контрольной группой.

На основании проведенного научно-хозяйственного опыта целесообразно вводить в состав комбикорма вместо других белковых кормов 24% зерна белого люпина сорта Дега (безалкалоидный).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ:

- 1. Буряков Н.П. Кормление высокопродуктивного молочного скота. М.: Проспект, 2009, 416 с.
- 2. Буряков Н.П., Демидова Е.П. Нормирование рационов в России и Нидерландах // Животноводство России, 2012; 5: 61-63.
- 3. Кормление стельных сухостойных и дойных коров // Молочная промышленность, 2008; 4: 37–39.
- 4. Оптимизация рационов кормления высокопродуктивных молочных коров: Методическое пособие / С.Г. Кузнецов, Л.А. Заболотнов, И.Г. Панин, В.В. Гречишников, А.А. Сырьев, А.И. Панин, Н.П. Буряков, М.А. Бурякова. М.: Изд-во РГАУ—МСХА имени К.А. Тимирязева, 2011. 55 с.
- 5. Харитонов Е.Л., Физиология и биохимия питания молочных коров. Боровск, «Оптима Пресс», 2011, 77 с.