Обозначения: х) – в подземных источниках нехлорированных аммоний натурального происхождения; (Р) – провизорные величины. Для субстанции, когда идет речь о лечебных эффектах есть ограничения безопасности при нормировании ТОІ (допустимый дневной расход) является большей чем 1000; (U) – концентрация субстанций на уровне либо ниже установленного на основании допустимых критериев, влияет на вид, вкус или запах воды; 1) – субстанции, наличие которых в нитьевой воде может влиять на вкус, цвет или запах; 2) – для субстанций, подозрительных как ракообразующие, при допустимом риске новообразований порядка 10³ в течение всей жизни:

3) — нет возможности указания допустимых величин, основанных на здровотных критериях, т.к. их наличие в питьевой воде не составляет никакой опасности для здоровья; 4) — Сумма ТНМ — хлороформ, бромоформ,бромодихлорометан, дибромохлорометан; 5) — Сумма WWA — ракообразующие формы — бензо(б)флуорантен, бензо(к)флуоронтен, индено (1, 2, 3 св) пирен; ** - Пестициды, инсектициды, гербициды, фунгициды, акарициды, альгициды, немотоциды, родентициды, слимициды, сопутствующие продукты, между прочим, регуляторы роста, пролукты их метаболизма, деградации и реакций. Параметрическая величина каждого пестицида является индивидуальной, за исключением ольдрина/диольдрина и эпоксида гептахлора, для которых параметрическая величина составляет 0,03µg/dm³ : ***Сумма всех параметрических величин отмеченных пестицидов

Вода, используемая в пищевой промышленности должна соответствовать определенным качественным нормам питьевой воды. На предприятиях, которые не осуществляют забор воды из публичных водопроводов, а из собственных источников, может появиться потребность модернизации станций очистки воды.

Качественное исследование системы дифференциальных уравнений, описывающей зависимость плотности рыбных скоплений от распределения кормовых запасов.

Дедок Н. Н., БГАТУ, г. Минск

Исследуется система дифференциальных уравнений

$$\frac{dN}{dt} = N(kM - l),$$

$$\frac{dM}{dt} = \mu - (b + pN)M,$$
(1)

описывающая зависимость плотности рыбных скоплений от распределения кормовых запасов. Ввиду практического смысла рассматриваются положительные коэффициенты и часть фазовой плоскости, для которой $N \ge 0$, $M \ge 0$.

Система (1) может иметь максимум два состояния равновесия $O_1(o;\frac{\mu}{b})$ с корнями характеристического λ - уравнения

$$\lambda_1 = -b, \quad \lambda_2 = \frac{\mu k - bl}{b} \quad u \quad O_2 \left(\frac{\mu k - bl}{l p}; \frac{l}{k} \right).$$

Характеристическое г -уравнение для состояния равновесия O_2 имеет вид $r^2 + \sigma r + \Delta = 0$, где $\sigma = \frac{\mu \, k}{l}$, $\Delta = \mu \, k - b l$.

Установлено, что возможны следующие случаи: единственное состояние равновесия O_1 , которое может быть устойчивым узлом или седло-узлом; O_1 – седло и O_2 - устойчивый узел или устойчивый фокус.

Изучено, что состояния равновесия на бесконечности являются седлоузлами.

Установлено отсутствие предельных циклов для системы (1).

Применяемые основные способы исследования – методы качественной теории дифференциальных уравнений.

Применение операционного исчисления в исследованиях процессов и систем автоматического регулирования сельскохозяйственного производства

Бурганская Л. И., канд. физ.-мат. наук, доцент, **Крутов А. В.,** канд. техн. наук, доцент, **Хвощинская Л. А.,** канд. физ.-мат. наук, доцент, БГАТУ, г. Минск

При современных стремительных темпах развития и обновления техники как никогда велика потребность в грамотных, отвечающих требованиям дня, обладающих глубокими знаниями инженерах. Их задача не только уметь эксплуатировать технику, но и создавать новые модели сельскохозяйственных машин и процессов с характеристиками, не уступающими лучшим зарубежным аналогам. Для этого специалисту необходимо владеть методами математического моделирования, иметь математическое мышление. На кафедре высшей математики университета стремятся дать знания будущим инженерам по многим специальным разделам математики, в частности, операционному исчислению, решению дифференциальных уравнений в частных производных, элементам теории устойчивости и т.д.

В докладе приводится основное содержание разработанного на кафедре методического пособия «Элементы операционного исчисления и устойчивости и их применение при исследовании некоторых систем автоматического регулирования». Операционное исчисление применяется при реше-