ПЕРЕРАБОТКА И УПРАВЛЕНИЕ КАЧЕСТВОМ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

Для создания равномерной освещенности рабочих мест при общем освещении светильники с люминесцентными лампами встраиваются непосредственно потолок помещения и располагаются в равномерно-прямоугольном порядке. Наиболее желательное расположение светильников – в непрерывный сплошной ряд вдоль длинной стороны помещения.

Длительность работы студентов на занятиях с использованием ПЭВМ определяется курсом обучения, характером (ввод данных, программирование, отладка программ, редактирование и др.) и сложностью выполняемых заданий.

Для студентов первого курса оптимальное время учебных занятий при работе с ПЭВМ составляет 1 ч, для студентов старших курсов -2 ч с обязательным соблюдением между двумя академическими часами занятий перерыва длительностью 15-20 мин. Допускается время учебных занятий с ПЭВМ увеличивать для студентов первого курса до 2 ч, а для студентов старших курсов до 3 академических часов, при условии, что длительность учебных занятий в компьютерном классе не превышает 50% времени непосредственной работы на ПЭВМ и при соблюдении профилактических мероприятий: упражнения для глаз, физкультминутка и физкультпауза.

Список использованной литературы

1. Санитарные нормы и правила «Требования при работе с видеодисплейными терминалами и электронно-вычислительными машинами»: постановление Министерства здравоохранения Республики Беларусь, 28 июня 2013 г., № 59 [Электронный ресурс]. – Режим доступа: http://minzdrav.gov.by. – Дата доступа: 30.01.2019.

УДК 539.16.08

Абметко О.В., Корчик С.А.

Белорусский государственный аграрный технический университет, г. Минск

ОЦЕНКА РАДИАЦИОННОГО ФОНА ПРИ ИСПОЛЬЗОВАНИИ ИНТЕРАКТИВНОЙ ДОСКИ В УЧЕБНЫХ ЗАВЕДЕНИЯХ

Современные технологии уже давно стали неотъемлемой составляющей нашей жизни, в том числе образовательного процесса. Использование компьютеров, видеопроекторов, интерактивных досок и других мультимедийных средств на уроках стало незаменимым и даже обыденным.

Такое средство мультимедиа как интерактивная доска полностью заменяет обычные меловые доски, диапроекторы, телевизоры в процессе обучения.

Общепризнано, что применение интерактивных досок в ходе педагогического процесса значительно расширяет возможности учебного процесса, позволяет предложить учащимся более полную и точную информацию об изучаемом предмете или явлении. Польза в преподавании предметов с использованием интерактивных досок неоценима.

Однако не утихают споры о вреде интерактивных досок. Многие считают, что интерактивные доски опасны для здоровья и против их использования на занятиях. В первую очередь вредное влияние связывают с излучением, справедливо полагая, что поскольку интерактивная доска — это техническое средство, то должно быть и электромагнитное излучение. Так ли уж опасна интерактивная доска? Действительно ли она влияет на здоровье и может стать причиной расстройств и заболеваний?

Интерактивные доски задумывались первоначально не для нужд образования, производители ориентировались на их офисное использование. Но позже производителям стало ясно, что интерактивная доска будет полезна не только в офисах, но и в процессе обучения. Их применение способствует повышению мотивации обучения учащихся и экономии учебного времени.

Интерактивная доска представляет собой большой сенсорный экран, работающий как часть системы, в которую входят компьютер и проектор. С помощью проектора изображение рабочего стола компьютера проецируется на поверхность интерактивной доски.

Доски бывают двух типов: прямой и обратной проекции. В случае прямой проекции, проектор находится перед доской, а обратной – за доской [2].

Доски прямой проекции – самые простые и дешевые, чтобы тени, блики и световые пятна не искажали и не перекрывали изображение, с такими досками рекомендуется использовать короткофокусные и ультракороткофокусные проекторы, которые могут располагаться в непосредственной близости от доски.

Большинство интерактивных досок, используемых в учебном процессе – доски с прямой проекцией.

Следует сказать, что интерактивные доски производятся с применением различных технологий определения положения стилуса на поверхности. Сейчас существуют: сенсорная, резистивная, оптическая, инфракрасная, ультразвуковая, электромагнитная технологии.

Все эти технологии можно разделить на две условные подгруппы: доски, для которых нужен специальный «маркер» (электромагнитная и лазерная технологии) или же доски, которыми можно управлять как специальным маркером, так и любым другим предметом (резистивная, ультразвуковая и инфракрасная технологии). Каждая из них имеет свои преимущества: основными для одной это быстрота и легкость управления без дополнительных приспособлений, на другой же проще делать построения и все операции, связанные с точностью определения прикосновения. Кроме того, доски, созданные с применением электромагнитной и резистивной технологий должны подключаться к компьютеру и источнику питания проводами [2].

Интерактивная доска вместе с проектором и компьютером является источником практически всех видов электромагнитного излучения.

Методика проведения исследований радиационного фона от интерактивной доски

В рамках проводимых исследований радиационного фона (ионизирующее излучение) ставилась цель:

оценить уровень ионизирующего излучения (радиационный фон) интерактивной доски;
Проводились измерения эквивалентной дозы поглощенного излучения на расстояниях
1 м, 2 м, 3 м, 4 м, 5 м от интерактивной доски.

Рассчитывалось среднее значение эквивалентной дозы поглощенного излучения и сравнивались полученные значения фона с величиной естественного радиационного фона, принятого по нормам -0.2 мк3в/ч.

Определялись значения доз ионизирующих излучений, которые получит студент в течение года, при условии, что среднее значение радиационного фона на протяжении года меняться не будет.

Приборы и оборудование для проведения измерений: индикатор радиоактивности дозиметр-радиометр МКС АТ 6130, рулетка, интерактивная доска.

В рамках исследований проводилась оценка ионизирующих излучений, создаваемых интерактивной доской, активно используемой в высших учебных заведениях при организации учебного процесса (чтение лекций).

Измерялся уровень радиационного фона вблизи интерактивной доски по величине мощности эквивалентной дозы поглощенного излучения с помощью дозиметра-радиометра МКС АТ 6130. Измерения проводились на расстояниях 1 м, 2 м, 3 м, 4 м, 5 м от интерактивной доски.

Определялась мощность дозы (МД) гамма-излучения в аудитории и полученное среднее значение сравнивалось с уровнем естественного гамма-фона на территории Республики Беларусь, норма которого составляет до 0,2 мкЗв/ч. Измерение уровней МД гамма-излучения в Республике Беларусь проводится ежедневно дозиметрами или другими средствами измерения со статической погрешностью не более 20 %.

Вычислялось значение дозы ионизирующих излучений, которую получит студент в течение года, при условии, что среднее значение радиационного фона на протяжении года меняться не будет. Среднее значение мощности эквивалентной дозы гамма-излучения в аудитории составляет $0,05\,$ мкЗв/ч, с учетом наличия источника ионизирующего излучения (интерактивной доски) – $0,07\,$ мкЗв/ч.

Результаты экспериментальных исследований приведены в таблице 1.

Результаты изме				

Номер измерения	Возле доски	Расстояние от доски					
Номер измерения		1 м	2 м	3 м	4 м	5 м	
1	0,11	0,08	0,07	0,06	0,07	0,06	
2	0,10	0,09	0,08	0,07	0,06	0,06	
3	0,10	0,08	0,07	0,06	0,05	0,05	
4	0,09	0,08	0,07	0,06	0,07	0,06	
5	0,10	0,08	0,07	0,06	0,05	0,05	
Среднее значение	0,10	0,08	0,07	0,06	0,06	0,05	

Из таблицы 1 видно, что значение радиационного фона не превышает величины, принятой за норму, — 0,2 мкЗв/ч. Наглядно данную зависимость можно увидеть на рисунке 1.

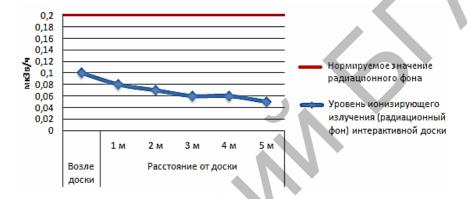


Рисунок 1. Сравнение полученного среднего значения радиационного фона интерактивной доски с нормируемым значением радиационного фона

Расчет значения дозы ионизирующих излучений от интерактивной доски, которую получит студент в течение учебного года, проводился по формуле:

$$D = t \cdot P \cdot N, \text{ m3B}, \tag{1}$$

где D – доза, полученная за год (м3в);

t — среднее время работы с интерактивной доской в неделю (час);

P – среднее значение всех фактических замеров (мк3в/ч);

N – количество учебных недель за год. [1]

Расчет времени работы доски производился с учетом следующих показателей: среднее время использования доски — до 1 час 20 мин по 4 пары в день (использовались максимальные значения). В среднем в неделю 20 часов. Количество учебных недель в году N=34.

Тогда по формуле (1) получаем: мкЗв/год = 0,0442 мЗв/год.

Безопасной для населения считается средняя годовая доза ионизирующих излучений в 1 м3в [1].

Радиационный фон при использовании интерактивной доски не превышал допустимых норм, считающихся безопасными для здоровья человека, -0.2 мк3в/ч. Средняя годовая доза ионизирующих излучений, полученная от интерактивной доски в 23 раза меньше допустимой нормы.

С увеличением расстояния от интерактивной доски радиационный фон уменьшается.

Учитывая эти результаты, можно утверждать, что радиационный фон в аудиториях, где расположены интерактивные доски, не значителен.

Список использованной литературы

- 1. Виды и возможности интерактивных досок [Электронный ресурс] Сайт «DeLight2000» // URL: http://www.delight2000.com/about/publication/kak-vybrat-interaktivnuyu-dosku/(дата обращения 15.12.2018).
- 2. Интерактивные доски. Зачем они и для кого? [Электронный ресурс] Сайт «Geektimes»// URL: https://geektimes.ru/post/118536/ (дата обращения 15.12.2018).

УДК 658.346.52

Основина Л.Г., кандидат технических наук, доцент, Новицкая Е.Я. Белорусский государственный аграрный технический университет, г. Минск Мальцевич И.В.

Белорусский национальный технический университет, г. Минск

ВОЗДЕЙСТВИЕ ИСТОЧНИКОВ МЕХАНИЧЕСКОГО ТРАВМИРОВАНИЯ НА ЧЕЛОВЕКА

Проблемой обеспечения безопасности человека является снижение негативного воздействия технических систем на человека и окружающую среду. Для ее решения необходимо: провести идентификацию и анализ опасных и вредных факторов; разработать систему защитных мероприятий, при наибольшем эффекте защиты и оптимальных затратах на их реализацию.

Идентификация опасностей технических систем предполагает: выявление конкретных источников опасности; определение номенклатуры опасных и вредных факторов, характерных для технической системы; определение уровня опасных и вредных факторов (массы выбросов и сбросов вредных веществ от технической системы и отходов производства, а также интенсивности потоков энергии различных видов, излучаемых технической системой).

При разработке различных технологических процессов в сельском хозяйстве, как и других отраслях, к каждому элементу, вовлеченному в процесс производства, предъявляются определенные, специфические требования. К машине — технические и агротехнические, механизатору — профессиональные. В растениеводстве предъявляются требования к посевному и посадочным материалам, агрохимикатам, производственной среде, организаторам производства и т.д. И все без исключения элементы должны соответствовать требованиям безопасности.

Что касается средств производства, то разработчики технологических процессов убеждены в том, что безопасность системы автоматически обеспечивается организационной структурой на этапах разработки, испытаний и эксплуатации сельскохозяйственной техники.

Отличительной особенностью сельскохозяйственного производства является то, что оно выполняется в условиях постоянно меняющихся параметров производственной среды, что для большинства промышленных производств считается серьезным технологическим нарушением. В то же время возможности адаптации средств производства к колебаниям параметров производственной среды: физическому состоянию почвы, семян, минеральных удобрений, растительной массы — весьма ограничены. Возникающее рассогласование между отдельными элементами процесса, и резко возрастающее при этом число технических и технологических отказов, вынужден компенсировать дополнительными тратами механизатор, что неизбежно приводит к повышенному уровню травмирования и росту профессиональной заболеваемости среди трактористов и комбайнеров.

Этому способствует и тот факт, что средства безопасности, устанавливаемые на сельскохозяйственной технике, встраиваются в технологические узлы и не учитывают