Eile Edit View Web Window Help **Book Medital Numeric format: ShortG									
		1	2	3	4	5	6	7	8
Contraction and Section 1	1	0	7.6	17.5	3.5	14	12.6	12.8	16
***************************************	2	7.6	0	11	8	15	9	10	13
No. of Tables Commission and Commission (Commission Commission Com	3_	17.5	11	0	3.5	4.7	5	5.4	10
adadrat sedimo a la consensa.	4	3.5	8	3.5	0	8.1	3.5	4	7.5
	5	14	15	4.7	8.1	0	8.8	10.5	15
	6	12.6	9	5	3.5	8.8	0	0.7	4.5
	7	12.8	10	5.4	4	10.5	0.7	0	5.2
	8	16	13	10	7.5	15	4.5	5.2	O

Рисунок 1 - Матрица расстояний между пунктами, км

В первый маршрут последовательно входят пункты 5, 3, 6, 7, 8, во второй маршрут — пункты 4 и 2. По этим данным выделяем магазины, входящие в первый маршрут, и составляем для них новую матрицу расстояний **A**, для чего удаляем вторые и четвертые строки и столбцы из матрицы **C**. Для матрицы **A** выполняем решение посредством процедуры (3).

Применение процедуры (3) не изменило первый маршрут. Так как размерность матрицы **A** невелика, то выполним точный расчет и получим оптимальный маршрут и программу распределения транспортных средств. Погрешность расчета по процедурам (1), (3) для данного случая составила менее 1%. Маршрут имеет вид: РУСПП → Универсам «Кунцевщина» → «Универсам "Фрунзенский» → Универсам «Могилёвский» → Универсам «Московский» → магазин №19 → РУСПП и составляет 45,3 км.

Так как вторая группа с маршрутом длиной 19,1 км включает в себя только 2 магазина: Универсам «Северный» и Универсам «Юбилейный», то ее маршрут в уточнении не нуждается.

Критерий оптимизации (2) в нашем случае имеет вид:

$$0.18 \times TC(1) + 0.17 \times TC(2) \rightarrow min.$$

Рассчитаем расход топлива на доставку продукции

$$0.18 \,\mathrm{J/km} \times 45.3 \,\mathrm{km} + 0.17 \,\mathrm{J/km} \times 19.1 \,\mathrm{km} = 11.4 \,\mathrm{J}$$

Расчеты с помощью программы на встроенном языке программирования при варьировании величины **Q** показали, что полученное значение расхода топлива удовлетворяет критерию (2).

Изложенная методика была апробирована в районном управлении «Столбцырайгаз» для планирования маршрутов по доставке баллонов газа сельским потребителям Столбцовского района спецавтомобилями на шасси ГАЗ-3307 с двигателями одного типа. В результате апробации методики было установлено, что при ее использовании суммарный пробег автотранспорта снизился примерно на 15%.

Таким образом, информационные технологии *MATLAB* могут быть эффективно использованы для оптимизации маршрутов поставок продукции и услуг в АПК.

НЕКОТОРЫЕ ЛИНЕЙНЫЕ УРАВНЕНИЯ ПФАФФА ТИПА ФУКСА

Н. Д. Василевич, к.ф.-м.н., доцент

В настоящей работе рассматривается линейная система дифференциальных уравнений с заданными особыми алгебраическими поверхностями. К решению этих уравнений приводят ряд задач в теории упругости, исследование течения грунтовых вод и другие задачи теоретической физики и механики сплошной среды.

На открытом множестве M рассмотрим уравнение вида:

$$dY = \left(\sum_{i=1}^{q} A_i \frac{dP_i(x)}{P_i(x)}\right) Y,\tag{1}$$

где Y — неизвестная, а A_i — заданные квадратные комплексные матрицы порядка $p,\ P_i$ — однородные неприводимые полиномы степени p_i от $x=(x_0,\dots,x_m)$ и

$$p_1 A_1 + \dots p_q A_q = 0. \tag{2}$$

Открытое множество М определим следующим образом:

$$m = \mathbb{C} \operatorname{P}^m \setminus \left(\bigcup_{i=1}^q \overline{P_i} \right), \tag{3}$$

где \overline{P}_i — алгебраическое многообразие коразмерности 1 в $\mathbb{C} \, \mathrm{P}^m$, которое задается формулой $\overline{P}_i = \left\{ x \in \mathbb{C} \, \mathrm{P}^m, P_i(x) = 0 \right\}$.

Пусть

$$\omega = \sum_{i=1}^{q} A_i \frac{dP_i}{P_i} \tag{4}$$

дифференциальная 1-форма со значениями в квадратных комплексных матрицах порядка *п*. Как известно [2,3] условие полной интегрируемости уравнения (1) имеет вид

$$\omega \wedge \omega = \sum_{i < j} [A_i, A_j] \frac{dP_i \wedge dP_j}{P_i P_j} = 0,$$
(5)

где $[A_i, A_j] = A_i A_j - A_j A_i$ — коммутатор матриц A_i и A_j .

Ясно, что условие (5) всегда выполняется, если все матрицы A_i , $i=\overline{1,q}$, попарно коммутируют между собой. В этом случае уравнение (1) легко интегрируется: фундаментальная матрица решений Y(x) уравнения (1) задается формулой

$$Y(x) = \prod_{i=1}^{q} \left(P_i(x) \right)^{A_i}. \tag{6}$$

Отметим, что именно в силу условия (2) Y(x) зависит лишь от точки $x \in \mathbb{C} P^m$, так как

$$Y(\lambda x) = \prod_{i=1}^{q} (P_i(\lambda x))^{A_i} = \prod_{i=1}^{q} (P_i(x))^{A_i} \lambda^{p_1 A_i} = Y(x) \lambda^{p_1 A_1 + \dots + p_q A_q} = Y(x)$$

для всякого $\lambda \in \mathbb{C} \setminus 0$.

Во вполне интегрируемом уравнении (1) все матрицы A_i обязаны коммутировать между собой, например, в следующих двух случаях:

- а) если для всяких двух индексов $i, j = \overline{1,q}, i \neq j$ существует точка, принадлежащая лишь двум поверхностям \overline{P}_i и \overline{P}_i (случай общего положения);
- б) если существует такой индекс $i=\overline{1,q}$, что матрица U_i имеет попарно различные собственные числа и для всякого $j=\overline{1,q},\ j\neq i$, существует точка, принадлежащая лишь двум поверхностям $\overline{P_i}$ и $\overline{P_j}$ (в этом случае всякая матрица A_j коммутирует с A_i и, так как матрица A_i имеет попарно различные собственные числа, то преобразованием подобия с некоторой матрицей C она приводится к диагональной форме; поэтому матрицы $C^{-1}A_jC$, коммутирующие с диагональной матрицей $C^{-1}A_iC$, имеющей попарно различные собственные числа, обязаны быть диагональными и, следовательно, коммутировать между собой).

В [2] показано, как из коммутационных соотношений в фундаментальной группе

$$\pi_1\left(x_0,\mathbb{C}\,\mathrm{P}^m\setminus\bigcup_{i=1}^q\overline{P}_i\right),$$

где x_0 — фиксированная точка из $\mathbb{C}\operatorname{P}^m\setminus\bigcup_{i=1}^q\overline{P}_i$, выводятся коммутационные соотношения

между матрицами A_i во вполне интегрируемом уравнении (1). Один из основных наших результатов состоит в получении необходимых и достаточных условий полной интегрируемости уравнения (1), выраженных в терминах коммутационных соотношений между матрицами A_j при данном взаимном расположении многообразий \overline{P}_i , $i=\overline{1,q}$.

Проблема Римана-Гильберта для уравнения (1), которая называется также проблемой Римана-Гильберта-Левеля, формулируется следующим образом [2,4]: пусть задан гомоморфизм

$$\psi: \pi_1(x_0, \mathbb{C} P^m \setminus \bigcup_{i=1}^q \overline{P_i}) \to GL(n; \mathbb{C}),$$
 (7)

существуют ли такие матрицы $A_1, \ldots A_q$, что гомоморфизм монодромии φ_a совпадает с гомоморфизмом ψ ?

Эта проблема легко решается в том частном случае, когда группа монодромии

$$\varphi_{\omega}\left(\pi_{1}(x_{0},\mathbb{C}\,\mathbf{P}^{m}\setminus\bigcup_{i=1}^{q}\widetilde{P_{i}})\right)$$

абелева.

Действительно, если $B_1, \dots B_q \in GL(n;\mathbb{C})$ – образующие группы монодромии, соответствующие элементарным обходам вокруг поверхностей $\ \overline{P}_i$, то достаточно положить $A_i = \frac{1}{2\pi i} \ln B_i$, и тогда в соответствии с (6) при гомоморфизме φ_{ω} элементарному обходу вокруг многообразия \overline{P}_i соответствует матрица $\exp 2\pi i = \exp \ln B_i = B_i,$

$$\exp 2\pi i = \exp \ln B_i = B_i$$

откуда и следует, что $\varphi_{\omega}=\psi$.

Здесь предполагается, что у матриц B_i существуют такие значения логарифмов $\ln B_i$, для которых выполняется условие

$$\frac{1}{2\pi i} \sum_{i=1}^{q} p_i \ln B_i = 0.$$
 (8)

Заметим, что из условия (8) следует справедливость условия А. А. Болибруха [1]

$$\frac{1}{2\pi i} \sum_{i=1}^{q} p_i \ln \beta_i^j \equiv 0 \pmod{d}, \quad j = 1, \dots s,$$
(9)

- собственные числа матриц eta_i^j ,

$$B_i = diag(B_i^1, ..., B_i^s), d= HOД(p_1, ..., p_n).$$

Условие (9), как показано в [1], является необходимым и достаточным условием разрешимости проблемы Римана-Гильберта-Левеля в коммутативном случае.

Рассмотрим необходимые и достаточные условия интегрируемости уравнения (1) при m=2.

Пусть α — произвольная точка алгебраической кривой \overline{P}_i , а (ξ,η) — такие афинные координаты с началом в точке α в $\mathbb{C}\operatorname{P}^2$, что кривая \overline{P}_i касается в точке α оси $\eta=0$.

По теореме о неявной функции кривая \overline{P}_i в малой окрестности V точки α задается уравнением $\eta=f(\xi)$, где f — сходящийся степенной ряд без свободного и линейного членов. В алгебраической терминологии $(\xi,f(\xi))$ водимая параметризация кривой \overline{P}_i в точке α .

Для всякого полинома P_i

$$P_{i}(\xi, f(\xi)) = a_{ij}(\alpha)\xi^{K_{ij}(\alpha)} + O(|\xi|^{K_{ij}(\alpha)}), \tag{10}$$

а $K_{ij}(\alpha)$ — целое неотрицательное число, называемое порядком нуля полинома P_j на кривой \overline{P}_i в точке α [5,стр. 126]. В [5] показана инвариантность $K_{ij}(\alpha)$ при переходе к другой системе координат $\left(\xi_i,\eta_i\right)$.

Геометрический смысл $K_{ij}(\alpha)$ состоит в том, что $K_{ij}(\alpha)$ характеризует порядок касания кривых \overline{P}_i и \overline{P}_j в точке α (таким образом, очевидно, $K_{ij}(\alpha)=K_{ji}(\alpha)$). Более точно: $K_{ij}(\alpha)=0$, если \overline{P}_i и \overline{P}_j не пересекаются в точке α ; $K_{ij}(\alpha)=1$, \overline{P}_i и \overline{P}_j пересекаются в точке α трансверсально; $K_{ij}(\alpha)=2$, если \overline{P}_i и ' \overline{P}_j имеют простое касание в точке α (такое касание имеют прямая y=0 и парабола $y=bx^2$ в начале координат); и т.д.

Если теперь для всякого $i = \overline{1, q}$, положить

$$R_i = \left\{ \alpha \in \overline{P}_i, \ \exists \ j \in \overline{1, q}, \ j \neq i, \ K_{ij}(\alpha) > 0 \right\}$$

(таким образом, R_i — это конечное множество точек из $\overline{P_i}$, через которые проходит еще хотя бы одна кривая $\overline{P_i}$), то в этих обозначениях справедлива следующая теорема.

Теорема. Условие (5) равносильно выполнению условий

$$\left[A_{i}, \sum_{j \neq i} K_{ij}(\alpha) A_{j}\right] = 0 \tag{11}$$

для всякого $i=\overline{1,q}$ и всякой точки $\alpha\in K_i$.

Доказательство импликации (5) \Rightarrow (11). Пусть выполняется условие (5). Если умножить обе части (5) на $P=P_1 \cdot \ldots \cdot P_q$, то получим

$$dP_i \wedge \omega_i + P_i \sigma_i = 0, \tag{12}$$

где

$$\omega_i = PP^{-1} \sum_{j \neq i} \left[A_i, A_j \right] \frac{dP_j}{P_j}, \tag{13}$$

И

$$\sigma_i = PP^{-1} \sum_{\substack{k < j \\ k, i \neq i}} \left[A_k, A_j \right] \frac{dP_k \wedge dP_j}{P_k P_j},\tag{14}$$

являются дифференциальными 1- и 2-формами соответственно с полиноминальными коэффициентами. Так как $dP_i(x) \neq 0$ при всех $x \in \overline{P}_i$ (полиномы \overline{P}_i не особые), то из (12) следует, что для всякой точки $x \in \overline{P}_i$

$$dP_i(x) \wedge \omega_i(x) = 0. \tag{15}$$

Пусть теперь $\alpha \in R_i$, V – малая окрестность точки α , (ξ,η) — такие афинные координаты с началом в точке α , что прямая η =0 касается кривой \overline{P}_i в точке α , $\left(\xi,f(\xi)\right)$ —

неприводимая параметризация кривой \overline{P}_i в окрестности V. Тогда в силу (10) в окрестности V выполняется равенство

$$d\left.P_{i}(\xi,\eta)\wedge dP_{j}(\xi,\eta)\right|_{\eta=f(\xi)}=\left(b_{i}(\alpha)a_{ij}(\alpha)K_{ij}(\alpha)\xi^{K_{ij}(\alpha)-1}+0\left(\left|\xi\right|^{K_{ij}(\alpha)-1}\right)\right)d\xi\wedge d\eta$$
 (16) и, следовательно,

$$\begin{split} d \left. P_i(\xi,\eta) \wedge \omega_i(\xi,\eta) \right|_{\eta=f(\xi)} &= d P_i(\xi,\eta) \wedge \sum_{j\neq i} [A_i,A_j] \prod_{l\neq i} P_l(\xi,\eta) \frac{d P_i(\xi,\eta)}{P_j(\xi,\eta)} \right|_{\eta=f(\xi)} = \\ &= b_i(\alpha) \prod_{l\neq i} a_{il}(\alpha) \sum_{j\neq i} K_{ij}(\alpha) [A_i,A_j] \, \xi^{\sum\limits_{j\neq i} K_{ij}(\alpha)-1} + 0 \Big(\big|\xi\big|_{j\neq i}^{\sum\limits_{k\neq i} K_{ij}(\alpha)-1} \Big) d\xi \wedge d\eta, \end{split}$$
 где $b_i(\alpha) \frac{\partial P_i(\xi,\eta)}{\partial \eta} \bigg|_{\xi=\eta=0} \neq 0$ и $a_{il}(\alpha) \neq 0.$

Поэтому из (5) следует, что коэффициент при $\xi^{\sum\limits_{j\neq i}K_{ij}(\alpha)-1}$ в (16) равен 0. Отсюда и из $b_i(\alpha)$, $a_{il}(\alpha)\neq 0$ следует

$$\sum_{i\neq i} K_{ij}(\alpha)[A_i,A_j] = 0,$$

то есть условие (11), что требовалось доказать.

Доказательство импликации (11) \Rightarrow (5). Так как коэффициенты дифференциальной 1-формы ω_i — полиномы степени $p-p_i-1$, где $p=p_1+\ldots+p_q$ и $p_i=\deg P_i$, то либо она имеет не более $p_i\left(p-p_i-1\right)$ нулей на $\overline{P_i}$, либо выполняется (15). Поэтому, если выполняются условия (11), то во всякой точке $\alpha\in R_i$ форма ω_i имеет нуль по крайней мере порядка $\sum_{j\neq i}K_{ij}(\alpha)$. Отсюда вытекает, что форма ω_i имеет на $\overline{P_i}$ по крайней мере

 $\sum_{\alpha \in \mathbb{R}} \sum_{i \neq i} K_{ij}(\alpha) = (p - p_i) p_i$ нулей, считая с их кратностями и, следовательно, выполняется (15).

Далее, так как $P\omega \wedge \omega = dP_i \wedge \omega_i + P_i\sigma_i$, то из (15) следует, что $P\omega \wedge \omega = 0$ на \overline{P}_i . Таким образом, дифференциальная 2-форма с полиномиальными коэффициентами степени p–2 обращается в нуль на $\overline{P}_1 \cup \ldots \cup \overline{P}_q$, т.е. на алгебраической кривой степени p. Отсюда следует, что $P\omega \wedge \omega = 0$ и, следовательно, $\omega \wedge \omega = 0$. Теорема доказана.

- 1. Болибрух А.А. Пример неразрешимой проблемы Римана-Гильберта на \mathbb{CP}^2 . Межвузовский сборник "Геометрические методы в задачах алгебры и анализа". Ярославль, ЯрГУ, 1980, с.60–64.
- 2. Голубева В. А. О фуксовых системах дифференциальных уравнений на комплексном проективном пространстве. Дифференц.уравнения, 1977, т.13, №9, с.1570–1580.
- 3. Gérard R. Le problème de Riemann-Hilbert sur une variété analytique complexe. Annales de l'Institut Fourier, 1969, vol.19, №2, p. 1–32.
- 4. Gérard R., Levelt A.H.M. Etude dune classe particulière de Systèmes de Pfaff du type de Fuchs sur l'espace projectif complexe. Journal de Mathematiques pures et appliquees, 1972, vol.51, №2, p. 189–217.
 - 5. Уокер Р. Алгебраические кривые. М.:Изд.иностр.лит., 1952. 236 с.