СЕКЦИЯ 3 ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ, МАШИНЫ И ОБОРУДОВАНИЕ В ЖИВОТНОВОДСТВЕ

УДК 502.1

микроэлементы в питании и обмене веществ

¹Сапего В.И., д.с-х.н., профессор, ²Ляхова Е.Н.

VO «Белорусский государственный аграрный технический университет», г. Минск
Витебская государственная академия ветеринарной медицины, г. Витебск
Республика Беларусь

В статье рассмотрены научные и научно-хозяйственные исследования по биологической активности и действию на организм микроэлементов. Исследование влияния микроэлементов на молодняк молочного периода показало, что дополнительное введение в основной рацион молодняка молочного и откормочного периодов микроэлементов железа, цинка, меди и кобальта способствовало увеличению в опытных группах среднесуточного прироста молодняка на 10-25 % по сравнению с контрольным молодняком, находящимся в одних и тех же условиях кормления и содержания. Заболеваний молодняка заразными и незаразными в опытных группах не регистрировалось.

Введение

Биогенные микроэлементы известны человеку с давних времен, но многие из них изучены недостаточно как в биологическом, так и в физиологическом отношении. В то же время установлено, что в биогенном значении в порядке изученности и содержания их в кормах чередуются следующие микроэлементы: железо, марганец, цинк, медь, кобальт, йод, селен и другие малоизученные микроэлементы. На долю этих микроэлементов в кормах приходится 1-1,5 % от общего количества минеральных веществ в рационах. Мало изучены в кормах такие микроэлементы, как никель, вольфрам, молибден и некоторые другие, но они в разных количествах содержатся в кормах и теле животных..Вместе с тем микроэлементы участвуют в обмене веществ в организме животных и человека, нормализуют работу внутренних органов (сердце, легкие, сосуды, печень и др.). Они обязательны в нормализации клеточного обмена и, особенно в регуляции проницаемости клеточных мембран. В статье приводятся результаты собственных исследований при скармливании микроэлементов поросятам молочного периода, поросятам-отъемышам, телятам молочного периода выращивания. При этом установлено, что молодняк поросят и телят в опытных группах лучше рос и развивался, меньще болел по сравнению с молодняком контрольных групп. В мясе поросят и телят, получавших в рационе минеральные добавки, содержалось достаточное количество макро- и микроэлементов, позволяющее отнести мясо к первой и высшей категории [2, 5, 9].

Основная часть

Для нормализации всасывания питательных веществ в желудочно-кишечном тракте необходимо присутствие в рационе всех элементов питания, в том числе минеральных веществ. В настоящее время расшифрована их необходимость в нормальном обмене воды, жира, белка и других видов обмена Микроэлементы являются важным составным элементом в создании и укреплении защитных сил организма и общего иммунитета от заразных и незаразных заболеваний животных и человека. Учитывая многообразное действие микроэлементов в биологии, мы изучали роль и значение в жизнедеятельности таких микроэлементов как цинк, железо, медь, кобальт, селен, бром, йод.

Применяя комплексонаты микроэлементов йода, меди, кобальта и селена при выращивании и откорме телят молочного периода до четырехмесячного возраста, мы установили, что телята опытных групп росли и развивались лучше, чем контрольные животные. Состояние здоровья телят в опытных группах было более устойчивым, чем в контрольных. Животные меньше болели незаразными болезнями. Среднесуточные приросты в опытной группе были на 10-17 % выше, чем в контрольной. Такие же показатели отмечены в группах бычков на выращивании и откорме, где среднесуточные приросты в опытных группах были на 15-25 % выше, чем в контрольных группах.

Применение вышеуказанной минеральной добавки, названной авторами «Тетрастим», поросятам подсосного периода и поросятам-отъемышам позволило в опытных группах получать среднесуточные приросты на 15-23 % выше, чем в контрольных. Поросята в опытных группах меньше страдали от незаразных болезней, активнее поедали корм, лучше росли и развивались [3, 6, 7].

Чтобы более полно понимать значение микроэлементов в жизни и развитии животных, необходимо знать о них основное, как биогенных элементах, необходимых для нормальной жизнедеятельности организма. В связи с этим мы считаем необходимым, повторить изучение влияния некоторых микроэлементов, особенно в различных их сочетаниях и дозах.

Железо регулирует уровень гемоглобина особенно у новорожденных поросят. Без него невозможен синтез гемоглобина. Уровень железа в сухом корме для подсосных свиноматок равен 100 мг/кг, для остальных свиней - 70-80 мг/кг в сутки. Наиболее рациональное применение железа в виде инъскций внутримышечно в область шеи или в мускулатуру задних конечностей. Поросятам в течение первых 3-х дней жизни необходимо ввести 200 мг декстрана железа. В 3-4-недельном возрасте инъекцию следует повторить. Железо необходимо всем видам животных, особенно молодняку, так как в молоке железа очень мало. В наших опытах железо скармливалось в комплексе с медью, цинком и кобальтом вследствие чего они лучше усваивалось.

Железо стимулирует кроветворение в организме, о чем свидетельствовало более высокое содержание гемоглобина в крови опытной группы телят.

Цинк, включенный нами в состав «Тетрастима», является структурным компонентом многих ферментов. В качестве неспецифического катиона он активизирует работу ферментов кишечного сока. Он активно влияет на рост и развитие организма, костеобразование, кроветворение, обмен нуклеиновых кислот, белков и углеводов. При недостатке цинка в организме часто наблюдается первичный дефект биохимического синтеза РНК и ДНК, который быстро устраняется при введении в рацион животным цинка. Цинк наряду с другими микроэлементами принимает участие в регулировании процессов воспроизводства через функцию гипофиза [5, 8, 9].

Медь в соединении с белками входит в состав ряда ферментов, которые способствуют нормальному росту и развитию организма. Они (ферменты) играют важную роль в окислительно-восстановительных процессах, катализируя отдельные этапы тканевого дыхания, повышают переваримость белков, процессы биосинтеза белков крови и мыши. Медь также оказывает благоприятное воздействие на биосин-

тез жира молока и нормальную жизнедеятельность микрофлоры преджелудков.

Кобальт способствует лучшему усвоению азота, повыщенному синтезу белков. Положительно действует на углеводный и минеральный обмен, накопление в организме витаминов: А, С, Е, В. Микроорганизмы рубца в присутствии кобальта лучше синтезируют витамин B_{12} , составным элементом которого он является. При недостатке кобальта животные худеют, бледнеют видимые слизистые оболочки, повышается смертность молодняка [1, 5, 6, 9].

Селен высокотоксичный элемент, особенно в неорганических соединениях, которые более ядовиты, чем органические. Он может компенсировать недостаток в рационе витамина Е. В микроколичествах он находится во всех тканях животных. Его применяют при заболеваниях печени, беломышечной болезни, экссудативном диатезе у цыплят. В биогеохимических зонах, недостаточных по селену,

добавка в рацион солей с селеном стимулирует рост и развитие животных [1, 5, 9].

В наших исследованиях, проведенных в КУСХП «Лучеса» Витебского района, при выращивании поросят подсосного периода с семидневного возраста и до отъема от свиноматок в 45 дней, применялись комплексонаты микроэлементов железа. Меди, цинка и кобальта. В сравнении с такими же дозами импортных микроэлементов среднесуточные приросты в опытных группах были на 16,4 % выше, чем у контрольных животных, получивших импортные микроэлементы. Поросята опытных групп не только лучше росли и развивались, но были более активными, лучше потребляли корм. Авторы делают вывод о целесообразности скармливания поросятам микроэлементов в виде комплексонатов отечественного производства [3, 6].

В СПК «Щемыслица» Минского района белково-минеральная добавка «Тетрастим», состоящая из костной муки и комплексонатов железа, меди, цинка и кобальта скармливалась поросятамотъемышам в течение 75 дней. Контрольной группе поросят скармливали основной рацион. При определении среднесуточных приростов установлено, что в опытных группах он был на 17-21,7 % вы-

ше, чем в контрольных.

Поросята опытных групп хорошо потребляли корм, были активными, подвижными, не болели незаразными болезнями, имели бледно-розовый цвет видимых слизистых оболочек и кожи. Гематологические показатели свидетельствовали о том, что у поросят опытной группы были более высокие уровни альбуминовой и глобулиновой активности сыворотки крови, отличались повышенным содержанием гемоглобина и витаминов по сравнению с показателями крови у поросят контрольных групп. Убой поросят на мясокомбинате и исследование мяса в лаборатории показали, что количество железа в нем составило 5,6 мг/кг, цинка – 4,6 мг/кг, меди – 1,2 мг/кг, кобальта – 0,3 мг/кг. Эти результаты исследований указывают на биологически обоснованное их содержание в мясе и отсутствие токсических уровней накопления используемых микроэлементов в кормах.

«Тетрастим» нами применялся также при выращивании телят до четырехмесячного возраста в СПК «Зазерка» Пуховичского района Минской области. При этом установлено, что комплексонаты железа, меди, цинка и кобальта, синтезированные сотрудниками НИИ ПФП БГУ, не обладают токсическим действием на организм лабораторных и сельскохозяйственных животных. Вместе с тем скармливание «Тетрастима» телятам молочного периода позволило получать дополнительно 10,4-20 % прироста в опытных группах телят по сравнению с контрольными, которые получали пойло без добавок микроэлементов. Заболеваний телят незаразными болезнями в опытных группах не было зарегистрировано, в контрольной – две головы переболели легкой формой бронхопневмонии и одна голова – гастроэнтеритом [5, 6, 7, 9].

Заключение

Применение микроэлементов в качестве кормовых добавок позволило организму животных более рационально использовать питательные вещества потребляемых кормов. Это объясняется тем, что у животных, особенно жвачных лучше развиваются преджелудки, в которых микрофлора более активно расшепляет труднопереваримую клетчатку в легкоусвояемые углеводы. Кроме того, стимуляция развития микроорганизмов преджелудков жвачных приводила к тому, что после отмирания они проходили через желудочно-кишечный тракт, переваривались в нем и являлись источником полноценного микробнологического белка.

Микроэлементы, применяемые в рационах в различных сочетаниях и дозах, способствуют улучшению обмена веществ в организме, усвоению из рациона питательных веществ, что выражается более высокими среднесуточными приростами по сравнению с контрольными группами. Биохимические и морфологические показатели крови подопытных животных свидетельствуют о более высокой резистентности молодняка в опытных группах по сравнению с контрольными. Молодняк опытных группах меньше страдал от незаразных болезней, давал более высокие приросты, чем в контрольных группах.

Литературя

Апспок П.Л. Микроудобрения: Справочная книга. – Л.: Колос, 1978. – 272 с.

2. Гурин В.К. Использование нового обогатителя в составе комбикормов для бычков/В.К. Гурин/Конкурентоспособное производство продукции животноводства в Республике Беларусь: сб. работ Международной науч.-производственной конференции (Жодино, 23-24 апреля 2008 г.). Белорусский научно-исследовательский институт животноводства; редкол.: И.П. Шейко [и др.]. Жодино 23-24 апреля 2008.

3. Люндышев В.А. Использование поваренной соли с микродобавками для повышения мясной продуктивности бычков. – НТИ и рынок, № 5, 1998, с. 34-36.

4. Сапего В.И. Микроэлементы при выращивании молодняка животных молочного периода [В.И. Сапего, С.А. Костюкевич, Е.И. Ляхова] Актуальные проблемы интенсивного развития животноводства. Материалы XII Международной научно-практической конференции. – Горки, 2009, с. 171-175.

- 5. Сапего В.И. Проблемы минерального питания животных в связи с загрязнением окружающей среды выбросами техногенного происхождения/В.И. Сапего, Н.Н. Крох/Проблемы интоксикации производства продуктов животноводства: тез. Докл. Международной научно-практической конференции (9-10 октября 2008 г.) Научно-практический центр НАН Беларуси по животноводству. Жодино, 1998, с. 238-239.
- 6. Сапего В.И., Берник Е.В. Биологически активные вещества и естественная резистентность телят. Ветеринария, № 5, 2002, с. 44-46.
- 7. Шейко И.П., Смирнов В.С. Свиноводство/Учебник. Минск, ООО «Новое знание», 2005, 384 с.
 - Щеплягина Л.А. и др. Цинк в педиатрической практике/Учебное пособие. М., 2001, 83 с.
- 9 Яковчик Н.С., Лапотко А.М. Кормление и содержание высокопродуктивных коров/Монография. Молодечно, РУП «Типография «Победа», 2005, 287 с.

УДК 541.133.08:519.8

К ВОПРОСУ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МОЮЩИХ РАСТВОРОВ

Исаеня Н.В., к. т. н., доцент

УО «Белорусский государственный аграрный технический университет» г. Минск, Республика Беларусь

Рассмотрен вопрос определения настроечных параметров прибора измерения концентрации моющих растворов на основе их электропроводности с учетом компенсации влияния температуры на процесс измерения