зависимости от сорта. Закрывают картофель малообъемным гребнем. Неглубокая посадка (50...70 мм от уровня образованного предпосадочной обработкой) обеспечивает лучшее прогревание клубней и их более быстрый рост. Формирование над клубнем в начале отсепарированного, а затем неотсепарированного слоя почвы способствует лучшему контакту клубней с почвой, что улучшает его рост и развитие. Размещение неотсепарированной почвы поверх гребня обеспечивает лучшее ее проветривание в переувлажненный период. Образование рядков клиновидной формы с уплотненными стенками обеспечивает более интенсивное поступление влаги из близлежащих слоев почвы к клубню в период засушливой весны и при посадке на песчаных и супсечаных почвах. Неотсепорированый слой почвы лучше противостоит прорастанию и развитию в нем семян сорняков, что позволяет увеличить время между формированием малообъемных и высокообъемных гребней и лучше развиться картофелю.

С появлением всходов (на 14...18 день после посадки) осуществляют формирование высокообъемных гребней из почвы, взятой в междурядьях, с таким расчетом, чтобы образовать два слоя- вначале из отсепарированной почвы, а затем из неотсепарированной.

Если малообъемный гребень формируют шириной 300...350 мм и высотой 40...60 мм, то высокообъемный гребень выполняют на высоту 150...180 мм, придавая ему трапециевидную форму.

Созданный объем почвы в гребне дает возможность продолжительное время сохранять оптимальный запас влаги в засушливые периоды, а его высота и форма способствуют сбросу избытка влаги при переувлажнении.

При интенсивном росте сорняков высокообъемные гребни можно образовывать за два подхода: первый - на 8...10 день, а другой - на 18...20 день после посадки. За счет размещения клубневого гнезда картофеля выше дна борозды значительно снижаются потери клубней от вымокания и создаются благоприятные условия для последующей механизированной уборки.

Обеспечение низкой плотности в гребнях, а также благоприятный их влаговоздушный режим создают наилучшие условия для развития картофеля. Кроме этого, это дает возможность лучше сдерживать рост сорняков и уменьшить число походов техники при уходе за посевами, что значительно снижает поражение клубней фитофторой за счет создания защитного слоя почвы, предохраняющего от проникновения инфекции в клубни.

Литература

- 1.К.А.Пшеченков. Индустриальная технология производства картофеля.- М: Россельхозиздат. 1985.
- 2. А.Н. Георгиевич и др. Комплексы новых машин для возделывания и уборки картофеля.- М: Колос. 1973.

УДК 631.362.333:635.21

ОБОСНОВАНИЕ РАБОТЫ МАШИНЫ ДЛЯ СУХОЙ ОЧИСТКИ КАРТОФЕЛЯ

¹Дашков В.Н., д.т.н., профессор, ²Рапинчук А.Л., к.т.н., ²Воробей А.С., аспирант, ¹Биза Ю.С., к.ф.-м.н., доцент, ¹Агейчик В.А., к.т.н., доцент

¹УО «Белорусский государственный аграрный технический университет» ² РУП «Научно-практический центр НАН Беларуси по механизации сельского хозяйства» г. Минск. Республика Беларусь

В статье приведен расчёт математической модели движения клубня картофеля по щёточной рабочей поверхности машины для сухой очистки картофеля с учетом статической нагрузки.

Введение

Для придания товарного вида картофелю при его предреализационной подготовке используется его очистка. В настоящее время наиболее перспективным является сухой способ очистки. После его картофель меньше травмируется, лучше хранится и обеспечивается существенное снижение энергозатрат на очистку [1].

Основная часть

Конструкция машины для сухой очистки картофеля. Машина состоит из следующих узлов и механизмов (рисунок 1): опорных стоек - 1; колёс- 2; загрузочного бункера - 3; прорезиненного полотна - 4; электродвигателя - 5; рамы - 6; вальцов – 7; приводных звёздочек - 8; пульт управления - 9.

Опорные стойки, выполнены телескопическими, что позволяет оператору изменять угол наклона рабочей поверхности машины.

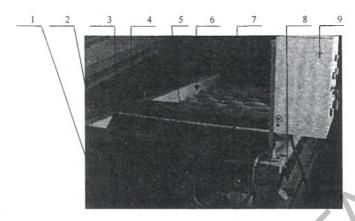


Рисунок 1 — Общий вид машины

Колеса крепятся к стойкам и при помощи них машина получает мобильность. Загрузочный бункер — один из основных элементов машины, состоящий из емкости и гасителей скорости падения клубней. Прорезиненное полотно шириной -1100 мм, длиной — 2090 мм, во время технологического процесса задерживает примеси. Электродвигатель имеет редуктор, рассчитанный на 180 мин -1. Рама представляет собой сварную конструкцию из профилсй, на которой имеются элементы строповки, крепятся опорные стойки и загрузочный бункер. Приводные звёздочки осуществляют привод рабочего органа машины при помощи цепей, установленных на валу, приводя в движение вальцы с капроновым щеточным покрытием. Пульт управления состоит из корпуса, внутри которого расположен импульсный частотник, а на поверхности расположены кнопки управления, посредством которых изменяется частота вращения вальцов.

Математическая модель движения клубня картофеля по щеточной рабочей поверхности с учетом статической нагрузки. При попадании из бункера на щеточную рабочую поверхность машины клубни картофеля на поверхности вальцов могут защемляться между вальцами и повреждаться в рабочих просветах. Условие, при котором защемление клубня картофеля между вальцами не происходит, можно сформулировать, спроектировав все силы на нормаль к рабочей поверхности, следующим образом:

$$G m s\theta + F_1 \cos \beta + N_3 \le N_1 \sin \beta + N_2 \sin \beta + F_2 \cos \beta \tag{1}$$

где θ - угол наклона рабочей поверхности к горизонту, град.; β - угол провисания клубня картофеля, град.; G - сила тяжести клубня картофеля, H; N_1,N_2 - нормальные реакции давления клубня на вальцы 1 и 2, H; N_3 - сила давления полотна (статическая нагрузка), H; F_1,F_2 - силы трения, действующие на клубень, H.

Для определения условия выхода клубня картофеля из просвета между вальцами заменяем действие вальца 2 (рис 2.) действием движущейся наклонной плоскости. Для этого проводим плоскость l-l, касательную к вальцу 2 в точке М касания клубня с вальцом 2, которая является движущей наклонной плоскостью. Скорость движения плоскости равна окружной скорости вальца

$$v = \varpi R = \frac{\pi R n}{30}$$
 (2)

где R - радиус вальца, м; n - частота вращения вальца, мин $^{-1}$

Таким образом, надо рассмотреть движение клубня картофеля относительно подвижной системы координат, движущейся поступательно вместе с касательной плоскостью к вальцу в точке провисания клубня.

В этом случае необходимо учитывать в переносной силе инерции только ее нормальную составляющую. (Сила Кориолиса равна нулю).

$$F_n^u = -m\omega^2 R \tag{3}$$

Тогда направляя ось x по плоскости 1-1 вверх, дифференциальные уравнения плоскопараллельного движения клубня картофеля относительно этой плоскости с учетом наклона рабочей поверхности под углом θ к горизонту можно записать в виде [3]

$$m\frac{d^{2}\tilde{o}_{c}}{dt^{2}} = F_{2} - mg\sin(\gamma - \theta) + F_{3}\cos(\gamma - N_{3}\sin(\gamma + m\omega^{2}R)) + F_{3}\cos(\gamma - \theta) + F_{3}\sin(\gamma + m\omega^{2}R) + F_{3}\sin(\gamma$$

где \tilde{o}_c , \dot{o}_c - координаты центра масс клубня картофеля; r - радиус клубня картофеля, м; J_c - момент инерции клубня картофеля, кг м²; φ - угол поворота клубня картофеля, град.

Решая систему дифференциальных уравнений (4) для скоростей центра масс клубней получаем уравнение:

$$\frac{dv_{cx}}{dt} \sim F_2 r (1 + \sin \beta) - mgr \cos(\beta + \theta) - N_3 \cos \beta . \tag{5}$$

Анализ уравнения (5) показывает, что если F_2r ($1+\sin\beta$) $< mg\,r\cos(\beta+\theta)+N_3\cos\beta$, то скорость клубня картофеля направлена вниз по наклонной плоскости и, следовательно, клубень картофеля, не будет перебрасываться через валец 2.

Если $F_2 r (1+\sin\beta) = mgr\cos(\beta+\theta) + N_3\cos\beta$, то уравнение движения клубня картофеля будет $\frac{dv_k}{dt} = 0$, следовательно, клубень картофеля будет занимать неустойчивое положение, и переход через валец 2 будет определяться случайными условиями взаимодействия, например, увеличением значения коэффициента трения f.

Если F_2r $(1+\sin\beta)>mg\,r\cos{(\beta+\theta)}+N_3\cos\beta$, то абсолютного перемещения картофельного клубня по наклонной плоскости вниз не будет. Плоскость вынесет клубень картофеля наверх т.е. движение клубня будет происходить в положительном направлении оси x (рис.2). Следовательно, это уравнение и является условием перебрасывания клубня картофеля через валец 2.

Частота вращения вальцов n может быть определена из условий движения одиночного клубня картофеля без отрыва от рабочей поверхности (рисунок 2):

$$F_{\tau} = mg \cos \beta$$

Или с учетом наклона рабочей поверхности к горизонту на угол heta

$$F_{TP} = mg\cos(\beta + \theta) \tag{8}$$

Так как клубень картофеля движется без отрыва от рабочей поверхности, то скорость и ускорение его вдоль оси $Y = \frac{d^2 y_c}{dt^2} = 0$. Отсюда из второго дифференциального уравнения системы (4)

определяем полную нормальную реакцию давления клубня картофеля на валец рабочей поверхности, выраженную через угол β ($\gamma = 90 - \beta$)

Так как угол $y = 90 - \beta$, то переходя в (9) к углу провисания β имеем

$$N_2 = mg\sin(\beta + \theta) + N_3\sin\beta + F_3\cos\beta - m\omega^2 R \tag{9}$$

Тогда сила трения F_{τ} , действующая на клубень картофеля имеет вид

$$F_T = f(mg\sin(\beta + \theta) + N_3\sin\beta + F_3\cos\beta - m\omega^2 R)$$
 (10)

тде $f=tg\phi$ – коэффициент трения между клубнем картофеля и вальцом; ϕ - угол трения. Угол провисания клубня картофеля между вальцами β (рисунок 2)

 $\beta = 180^{\circ} - (90^{\circ} - \varphi) \tag{11}$

Угловая скорость вальцов т

$$w = \sqrt{\frac{mg\sin(\beta + \theta) + N_2\sin\beta + F_3\cos\beta - \frac{mg\cos(\beta + \theta)}{tg\varphi}}{mR}}$$
(12)

где R - радиус вальца, м.

Принимая во внимание зависимость между частотой вращения и угловой скоростью, имеем

$$n = \frac{30\varpi}{\pi} \tag{13}$$

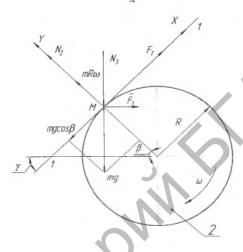


Рисунок 2 — Схема сил действующих на валец 2 рабочей поверхности:

mg — сила тяжести клубня картофеля; mg $\cos \beta$ — проекция силы тяжести клубня картофеля на ось $X;\ N_2$ — нормальная реакция от давления клубня на валец; N_3 — сила давления полотна; F_T — сила трення, действующая на клубень картофеля; β — угол провисания клубня картофеля; R — радиус вальца; 1-1 — плоскость касательная κ вальцу 2; ω — угловая скорость вращения вальца; 2 — валец рабочей поверхности

Таким образом, определены условия перебрасывания клубня картофеля через валец щеточной рабочей поверхности машины с учетом статической нагрузки (давления полотна) и частота вращения вальца из условия движения одиночного клубня картофеля без отрыва от щёточной рабочей поверхности машины.

Заключение

1. Расчеты показывают, что для лучшей работы машины для сухой очистки картфеля необходимо действие сиды нормального давления сверху на клубень картофеля.

2 Машина для сухой очистки картофеля и других клубнеплодов проста, малоэнергоёмкая и удобна в эксплуатации, может найти применение в овощехранилищах, оптовых базах по переработке картофеля, фермерских хозяйствах, на предприятиях АПК в рамках реализации программы развития картофелеводства.

Литература

- 1. Таушканов, А. Сухая очистка корнеклебнеплодов/ А.Таушканов, А.Фоминых // Сельский механизатор. № 9, 2005. С.28.
- 2. Дашков,В.Н. Экспериментальные исследования процесса сухой очистки картофеля/ В.Н.Дашков, А.Л.Рапинчук, А.С.Воробей и др. // Инженерный Вестник, № 2(26), 2008.-С.64-88.
- 3. Тарг С.М. Краткий курс теоретической механики: Учебник для втузов/ С.М.Тарг 18-е изд., стер.-М.: Высш. шк., 2008.-416с.: ил.