Чтобы определить характер зависимости (5), найдем производную y по h:

$$\sigma' = \frac{1}{h^{b+1}} \frac{p_0 cb}{\left(1 + \frac{1}{ch^b}\right)^2}.$$
(6)

Анализ показал, что зависимость (6) асимметрична относительно вертикали. Следовательно, зависимость между сопротивлением и осадкой почвы (5) является асимметричной относительно точки перегиба (рис. 1, б) и описывает более общий случай деформирования почвы по сравнению с применяемыми в земледельческой механике такого рода зависимостями.

Заключение

В общем случае деформирования, когда плотность почвы в различных горизонтах мало различима, зависимость между напряжениями сжатия и осадкой штампа имеет *S*-образный характер. График этой зависимости, имеющий вогнутый и выпуклый участки, является ассимметричным относительно точки перегиба.

Литература

- 1. Орда, А. Н. Эколого-энергетические основы формирования машиннотракторных агрегатов: автореф. дис. . . . д-ра тех. наук: 05.20.03 / А. Н. Орда; Белорус. аграр. тех. ун. Минск, 1997. 36 с.
- 2. Бойков, В. Обоснование зависимости между сжимающими напряжениями и осадкой почвы / В. Бойков, Ч. Жданович, А. Орда // Y Miedzynarodowe sympozjum Ekologiczne aspekty mechanizacji nawozenia, ochrony roslin i uprawy gleby. Warszawa, 1998. С. 161-168.

УДК 631. 17:633.1

МЕТОД РАСЧЕТА ЭФФЕКТИВНОСТИ УБОРКИ ЗЕРНОВЫХ КУЛЬТУР ОЧЕСОМ Бурьянов А.И., д.т.н., профессор, Горячев Ю.О., к.т.н., с.н.с., Бурьянов М.А. к.т.н., с.н.с. Северо-Кавказский научно-исследовательский институт механизации и электрификации сельского хозяйства

Из имеющихся в РФ 131 тыс. зерноуборочных комбайнов исправных 105 тыс. Около 60% комбайнового парка страны выработало амортизационный срок. В среднем по стране нагрузка на один комбайн на уборке зернобобовых культур составляет 383 га. [1]. В результате продолжительность проведения уборочных работ часто достигает 25-30 дней. Между тем затягивание сроков уборки свыше рекомендуемых 10 на 5 дней приводит к потерям урожая от 5,7 до 19,6% [2]. Основные причины сложившегося положения низкие уровни кредитоспособности сельских товаропроизводителей и их господдержки. В таких условиях ряд сельхозпредприятий пошли по пути внедрения новых, не имеющих достаточно полного научного обоснования и рекомендаций ресурсосберегающих технологий, например, No-till, и не всегда доведенных до серийного производства технических средств их реализации. Очевидно, что задача сельскохозяйственной науки – разработать полноценные технические регламенты новых технологий и, совместно заводами и КБ сельхозмашиностроения, создать технические средства, максимально адаптированные к многообразию условий их использования. Широкое применение находит технология уборки зерновых культур комбайновым очесом с использованием двухбарабанных очесывающих жаток производства «Украгросервис», однобарабанных- ОАО «Пензмаш». К сожалению, предложенные конструкции не доведены до необходимого технического и технологического уровня. При их использовании часто имеют место повышенные потери зерна, но производительность комбайна при этом увеличивается в зависимости от условий применения в 1,5-2,0 раза. Общеметодическое разрешение альтернативы может быть достигнуто при использовании ГОСТ Р 53056-2008 [3], в

соответствии с которым сравнительную оценку техники и экономические показатели ком-

плекса машин определяют методом наложения на объем работ типового хозяйства зоны и определения для него оптимальной структуры и состава МТП по минимуму совокупных затрат, включающих: прямые эксплуатационные затраты на выполнение годового объема работ МТП в типовом хозяйстве, значение величины убытка от изменения количества и качества продукции в типовом хозяйстве, значение величины убытка от условий труда и техники безопасности, значение величины убытка от отрицательного воздействия на окружающую среду, руб.

Для реализации общеметодического подхода по оптимизации МТП типового хозяйства по критерию совокупных затрат, в котором реализуют альтернативные технологии (в данном случае уборки зерновых культур) нами предложена методика проведения конкретных расчетов, в основу которой положен разработанный во ВНИПТИМЭСХ (ныне ФГБНУ СКНИИМЭСХ) пакет алгоритмов и программ, включающий блок оптимизации состава МТП [4]. В этом блоке в качестве критерия использовали ЧДД и интегральные затраты. Полагалось, что все работы выполняются в рекомендуемые зональные агросроки, из чего следовало, что потери от увеличения продолжительности уборочных работ отсутствуют, а потери за уборочными машинами не превышают предусмотренных агротебованиями. Кроме того, пакет включает блоки информационного обеспечения, подготовки исходных данных и послеоптимизационного анализа проектирования технологий и комплекса технических средств.

Для решения поставленной задачи с использованием разработанного ранее пакета программ была выполнена его модернизация. В модели предусмотрели:

- учет убытков, возникающих вследствие имеющих место суммарных потерь за уборочными агрегатами;
- учет убытков, возникающих вследствие увеличения продолжительности уборочных работ;
 - определение целочисленного количества агрегатов;
- использование данных о фактической годовой загрузке машин при расчете эксплуатационных затрат.

В качестве примера представлен расчет, выполненный для ООО СХП «Мечетинское» (Зерноградский район, Ростовской области). Данные расчетов приведены в таблице.

Таблица - Показатели эффективности оптимальных составов МТП ООО СХП «Мечетинское», сформированных с учетом различной продолжительности проведения уборки зерновых прямым комбайнированием и очесом

Кол-во	Экспл.	Стоимость	Расход	Затраты	ЧДД,	Совокупные	Кол-во ком-
дней	затраты,	парка, тыс.	Тасход ТСМ, кг	труда,	тыс.	затраты, тыс.	байнов
уборки	тыс. руб.	руб.	I CIVI, KI	челч	руб.	руб.	Acros, шт.
9	68171	296492	670133	1452	876939	144464	26,00
10	66430	278660	669116	1436	886948	141681	23,00
11	65234	265379	673460	1403	889734	140580	21,00
12	64220	254547	676262	1387	891801	140161	19,00
13	63545	248048	675531	1374	889592	140287	18,00
14	62856	241402	676689	1367	886173	140899	17,00
15	62105	231601	678768	1363	884939	141189	15,00
16	61718	230128	675893	1346	877376	142333	15,00
17	60635	220269	676075	1343	877127	142215	14,00
18	60176	215187	678070	1334	873101	143130	13,00
20	59636	209250	680061	1327	859661	145673	12,00

Площадь хозяйства — 11064 га. Направление деятельности — растениеводство. Возделываются: озимая пшеница, яровой ячмень, кукуруза на зерно, подсолнечник, сахарная свекла, горох. Для учета потерь за комбайнами и от увеличения продолжительности уборки были приняты следующие ограничения:

Секция 1: Технологии и техническое обеспечение сельскохозяйственного производства

- величина потерь зерна за комбайном с жаткой при прямой уборке, в соответствии с требованиями ГОСТ, не должна превышать 2%;
- при уборке очесом достигнутый минимальный уровень суммарных потерь зерна за комбайном с очесывающей жаткой составляет 2,5;
 - потери зерна осыпанием принимаем на основании данных [2].

Стеблестой после очеса зерновых культур предусматривали обрабатывать двойным проходом агрегатов.

При решении задачи выбора оптимального парка с использованием модернизированного пакета программ определяли п-вариантов оптимальных МТП, особенность расчета которых заключалась в том, что продолжительность выполнения уборочных работ для первого варианта принимали в пределах рекомендуемого агросрока, а для каждого последующего варианта его увеличивали на одни сутки относительно предыдущего. Как видно из таблицы оптимальный МТП по величине совокупных затрат и ЧДД при проведении уборки зерновых культур за 12 дней. В результате расчетов был определен весь состав МТП, выполняющий весь объем механизированных работ в полеводстве. В таблице приведен лишь состав комбайнового парка. Следует отметить, что данные справедливы при сложившихся ценах на технику, ГСМ, семена, удобрения и произведенную продукцию.

Литература

- 1. Елисеев, А. Рынок зерноуборочных комбайнов в России: многообещающие перспективы / А. Елисеев // Аграрное обозрение. -2011. № 5. C. 10-23.
- 2. Методика определения экономической эффективности технологий и сельскохозяйственной техники. Ч. II. Нормативно-справочный материал. М.: МСХ и П РФ, 1998. 251 с.
- 3. ГОСТ Р 53056-2008 Техника сельскохозяйственная. Методы экономической оценки Введ. с 11.03.2009 . -М.: Стандартинформ, 2009.-24 с.
- 4. Свид. о гос. рег. программы для ЭВМ 2003611559 Российская Федерация. Определение оптимального состава МТП сельхозпредприятия; правообладатель ГНУ ВНИПТИМЭСХ. № 2003611004 заявл. 05.05.2003 зарегистр. 27.06.2003. Бершицкий Ю.И., Болотов А.С., Горячев Ю.О., Шевченко Н.В., Головченко А.Н.

УДК 633.11 : 631.811.98

ЭФФЕКТИВНОСТЬ РЕТАРДАНТА МОДДУС НА ПОСЕВАХ ОЗИМОЙ ПШЕНИЦЫ

Ториков В.Е., д. с.-х. н., профессор, **Богомаз Р.А.**, аспирант, Брянская государственная сельскохозяйственная академия

Получение урожая зерна сортов озимой пшеницы интенсивного типа на уровне 7 - 8 т/га может обеспечиваться за счет формирования оптимальной плотности продуктивного стеблестоя и массы зерна в колосе. В опытах, проведенных в КФХ «Богомаз» Брянской области, повышенный уровень азотного питания - N 150 на фоне P_2O_5 -90; K_2O -120 при густоте продуктивного стеблестоя 500-550 шт./м² и выше способствовал формированию мощного стеблестоя и создавал предпосылки для полегания посевов. Потери урожая зерна в зависимости от времени и интенсивности полегания достигали до 30% и более. На вариантах опыта без применения ретардантов при густоте продуктивного стеблестоя до 500 шт./м² и внесении N 90 посевы не полегали.

Важным агроприемом против полегания посевов и получения высоких урожаев озимой пшеницы является использование ретардантов. Они вызывают укорачивание и утолщение стебля, расширение пластинок листьев, увеличивают интенсивность окраски листьев, способствуют росту корневой системы. Действие ретардантов направлено на клетки субапи-кальной меристемы, деление и растяжение которых замедляется [1, 2].