от числа исследованных четвертей у коров опытной группы в этом опыте был и по сравнению с контрольной. Не вызвал увеличения числа скрытых кроводоев режим работы доильного аппарата в восьмом опыте, где относительно невысокие частота пульсаций и величина вакуума под соском сочетались с относительно высокими величинами длительности такта сосания, вакуума в межстенном пространстве и смыкания сосковой резины.

Заключение

Результаты наших исследований показывают, что характер комплексного воздействия параметров работы доильного аппарата на эпителиальные ткани молочной железы не равнозначен. При этом необходимо отметить и тот факт, что наличие скрытых кроводоевв молоке коров обуславливается характером условий содержания, кормления, состоянием здоровья животного и климатическими факторами. Так, в третьем опыте неблагоприятные условия кормления и климата сказались не только на снижении продуктивности коров, но и увеличили степень первичной травматизации тканей молочной железы коров контрольной группы по сравнению с вторым опытом на 6,5%. Особенно ясно выраженное влияние на увеличение наличия скрытых кроводоев оказывает повышение температуры воздуха и ее колебания. Снижение температуры наружного воздуха к концу первого этапа эксперимента способствовало проявлению тенденции и уменьшению частоты скрытых кроводоев и у коров подопытных групп.

Литература

1. Налимов В.В., Чернова Н.А. Статистические методы планирования экспериментальных экспериментов. М.1965. 340 с.

УДК 697.535

ЭФФЕКТИВНОСТЬ ПРИМЕНЕНИЯ ИНФРАКРАСНЫХ ГАЗОВЫХ ТЕПЛОИЗЛУЧАТЕЛЕЙ В СИСТЕМАХ ОБОГРЕВА

В.Б. Ловкис, к.т.н., доцент, Н.А. Деменок, ассистент, Л.А. Абрамчик, ст. преподаватель, О.В. Данильчик, аспирант УО «Белорусский государственный аграрный технический университет» г. Минск, Республика Беларусь

Ввеление

В настоящее время в Республике Беларусь остро стоит проблема локального обогрева тепловым излучением растений, животных, птиц и обслуживающего персонала. В существующих системах обогрева помещений сельскохозяйственного назначения (теплиц, ремонтных мастерских, ангаров, складских помещений, цехов по переработке продукции и др.) используется принцип передачи тепла конвекцией. Тепло от теплогенераторов, батарей пароводяного теплоснабжения или от теплоэлектронагревателей передается воздуху, который разносит его по объему помещения.

Основная часть

Универсальный инфракрасный газовый теплоизлучатель предназначен для локального обогрева объектов в помещениях сельскохозяйственного назначения. Особенностью разработанного излучателя является его универсальность, пригодность для работы на любом газообразном топливе (природный, сжиженный, газогенераторный газ) в любых атмосферных условиях при скорости ветра до 5 м/с. Номинальная мощность теплоизлучателя в зависимости от модели составляет: 1,85; 3,65; 7,3; 14,5 кВт.

Состав теплоизлучателя (рисунок 1): инфракрасная горелка 1; фильтр газа 2; блок автоматики 3; пульт управления 4.

Состав инфракрасной горелки: корпус 5; инжектор 6; рекуператор 7 (на рисунке не показан); сопло 8 (сменный комплект); излучающий элемент 9.

Принцип действия теплоизлучателя:

Предварительно подготовленная горючая смесь газа с воздухом сжигается на пористом элементе 9. Струя газа, выходящая из отверстия сопла 8, засасывает необходимое количество воздуха на входе в инжектор 6.

Элемент 9 разогревается теплом от сжигания газа до яркого свечения при температуре $800\,^{0}$ С. Лучистый поток тепла в инфракрасной области излучения направляется в обогреваемую зону посредством установки нужного наклона излучающей плоскости элемента.

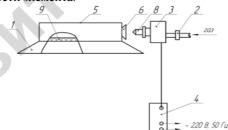


Рис. 1 – Принципиальная схема теплоизлучателя

Розжиг теплоизлучателя осуществляется через пульт управления 4 автоматически пламенем от электрического запальника. Подача газа в устройство контролируется датчиком пламени. При прерывании подачи газа или погасании горелки клапан блока автоматики 3 автоматически прекращает дальнейшую подачу газа в устройство.

Рассмотрим методику расчета энергетического баланса газовой горелки.

Расход газа рассчитывается по формуле

$$G_r = \frac{N}{Q_{musuu m}} (M^3 / 4), \qquad (1)$$

где N – общая тепловая мощность горелки, B_{T} ;

 $Q_{\mu \iota \jmath \iota \iota \iota \iota m}$ - теплота сгорания, МДж/м³.

Расход воздуха при коэффициенте избытка воздуха α рассчитаем

$$G_E = \alpha \cdot L_{E.meop.} \cdot G_r(M^3/4), \qquad (2)$$

где $L_{E.meop.}$ - теоретическое количество воздуха, м 3 .

Расход смеси при нормальных условиях (н.у.)

$$G_{cm.0} = G_r + G_E(M^3/4). (3)$$

Массовый расход смеси

$$M = \rho_{cm,0} \cdot G_{cm,0}(\kappa \varepsilon/c), \tag{4}$$

где $\rho_{cm,0}$ - плотность смеси, кг/м³.

Таким же будет и расход продуктов сгорания.

Критерий Грасгофа для продуктов сгорания на горизонтально ориентированной излучающей поверхности направленной вниз горелки шириной А:

$$Gr_{9} = g \cdot A^{3} \cdot \beta \cdot (t_{u33} - t_{0}) / \upsilon^{2}, \qquad (5)$$

где g – ускорение свободного падения, м/с²;

eta - коэффициент объемного расширения;

 υ - коэффициент кинематической вязкости.

Движение продуктов сгорания вдоль горизонтальной ориентированной вниз горячей поверхности керамического элемента будет ламинарным и теплообмен будет определяться [1,2]

$$Nu = 0.27 \cdot (Gr_{_{9}} \cdot Pr_{_{0}})^{0.25} \left(\frac{Pr_{_{0}}}{Pr_{_{9}}}\right)^{0.25},$$
 (6)

где определяющая температура – температура окружающей среды t_0 = 0 0 C;

Pr - критерий Прандля.

Средний коэффициент конвективного теплообмена с излучающей поверхности керамического элемента с уходящими продуктами сгорания будет рассчитан

$$\alpha_{\kappa, \lambda} = \lambda \cdot Nu_{\lambda} / A(Bm/M^2 \cdot K), \tag{7}$$

где λ - коэффициент теплопроводности продуктов сгорания (дымовых газов) при t $_{\rm n, o} = 0~^0 C.$

Мощность конвективного потока тепла с поверхности керамического элемента

$$N_{\kappa,9} = \alpha_{\kappa,9} \cdot S_9 \cdot (t_{ugg} - t_0) \tag{8}$$

где S_3 - площадь поверхности керамического элемента, м²;

Мощность радиационного потока, переданного от поверхности пористого элемента к окружающей среде составит

$$N_{u3n} = \varepsilon_{9.0} \cdot c_0 \left[\left(\frac{T_{u3n}}{100} \right)^4 - \left(\frac{T_T}{100} \right)^4 \right] \cdot S_9, \tag{9}$$

где $\mathcal{E}_{2,0}$ - степень черноты.

Суммарная мощность, отдаваемая излучающим элементом излучением, мольным переносом с продуктами сгорания и конвекцией, будет равна

$$N = N_{\kappa, \vartheta} + N_{u \vartheta \vartheta} + c_p \cdot (t_{u \vartheta \vartheta}) \cdot t_{u \vartheta \vartheta} \cdot M, \qquad (10)$$

где $c_p(t_{u_{3,1}})$ - теплоемкость продуктов сгорания при $t=t_{u_{3,1}}$.

Откуда

$$S_{_{9}} = \frac{N - c_{_{p}}(t_{_{H33}}) \cdot t_{_{H33}} \cdot M}{\alpha_{_{K.9}} \cdot (t_{_{H33}} - t) + \varepsilon_{_{9,m}} \cdot c_{_{0}} \left[\left(\frac{T_{_{H33}}}{100} \right)^{4} - \left(\frac{T_{_{T}}}{100} \right)^{4} \right]} (M^{2}) . \tag{11}$$

Общая тепловая нагрузка на поверхность керамического элемента

$$N_{y\partial} = \frac{N}{S_{3}} (Bm/M^{2}). \tag{12}$$

Общий коэффициент теплопередачи с излучающей поверхностью пористого элемента

$$\alpha_{9} = \frac{N_{y\vartheta}}{t_{u3t} - t_{0}} (Bm/M^{2} \cdot K). \tag{13}$$

Излучательный КПД:

$$\eta = \frac{N_{u_{3,n}}}{N}.\tag{14}$$

Приведём расчет теплоизлучателя общей тепловой мощностью $N=3650~{\rm Br}$, работающего на природном газе. Температура излучающей поверхности $t_{\rm изл}=800~{\rm ^0C}=800+273=1073~{\rm K}$. Температура тепловоспринимающей поверхности окружающей среды $t_{\rm r}=0^{\rm 0}{\rm C}=273{\rm K}$. Степень черноты тепловоспринимающей поверхности окружающей среды $\epsilon=0,9$. Коэффи-

циент излучения $c_0 = 5,67~\mathrm{Br}$ /(м² · К⁴). Температура окружающей среды $t_0 = 0~^0\mathrm{C} = 273~\mathrm{K}$.

Требуется найти мощность излучения и конвективного потока.

Проведя расчет энергетического баланса получили: расход природного газа составит 0.41м 3 /ч; мощность конвективного потока тепла 43 Вт; КПД инфракрасного излучения 41%.

Заключение

Применение инфракрасных газовых теплоизлучателей в системах обогрева позволяет обеспечить экономичный и эффективный обогрев помещения, не растрачивая энергию на прогрев больших объемов воздуха. Осуществление режима высокотемпературного сжигания обеспечивает самое минимальное загрязнение окружающей среды, а также и рабочей зоны вредными веществами (${\rm CO,\,NO_x}$) в продуктах сгорания.

Литература

- 1. Исаченко В.П., Осипова В.А., Сукомел А.С. / Теплопередача. Изд. 3-е, перераб. и доп., М., "Энергия", 1975, 486 с.
- 2. Мартыненко О.Г., Соковишин Ю.А. /Свободно-конвективный теплообмен: Справочник, Мн.: Наука и техника, 1982.-400 с.

УДК 631.22.018.1

ПЕРСПЕКТИВНЫЕ ТЕХНОЛОГИИ И ТЕХНИЧЕСКИЕ СРЕДСТВА ТРАНСПОРТИРОВАНИЯ БЕСПОДСТИЛОЧНОГО НАВОЗА НА ЖИВОТНОВОДЧЕСКИХ КОМПЛЕКСАХ

В.О. Китиков¹, к.т.н., доцент, Д.С. Праженик², ассистент

¹РУП "НПЦ НАН Беларуси по механизации сельского хозяйства", ²УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Уборка и утилизация навоза является важной проблемой народного хозяйства. Она особенно обострилась в настоящее время, так как в республике построено значительное количество крупных животноводческих ферм и комплексов.

Основная часть

Интенсификация технологического процесса удаления и утилизации бесподстилочного навоза наживотноводческих комплексах республики предполагает: значительное повышение уровня механизации и автоматизации процессов удаления и транспортирования навоза из помещений, сни-