УДК 637.116:621.65

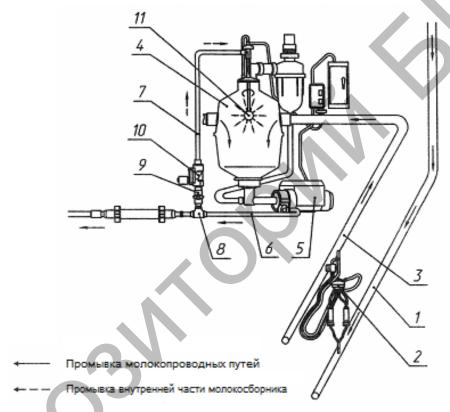
РАЗРАБОТКА КОНСТРУКЦИИ МОЮЩЕЙ ГОЛОВКИ ДЛЯ ПРОМЫВКИ МОЛОКОСБОРНИКА ДОИЛЬНОЙ УСТАНОВКИ

А.И. Пунько, к.т.н., доц., М.В. Иванов

Республиканское унитарное предприятие «НПЦ НАН Беларуси по механизации сельского хозяйства» г. Минск, Республика Беларусь

Молочное скотоводство республики располагает значительными резервами дальнейшего увеличения производства молока. Повышение уровня и качества кормления, улучшение селекционноплеменной работы и воспроизводства стада, внедрение элементов промышленной технологии способствуют достижению одной из главных целей интенсивного ведения молочного скотоводства — получению высококачественного молочного сырья.

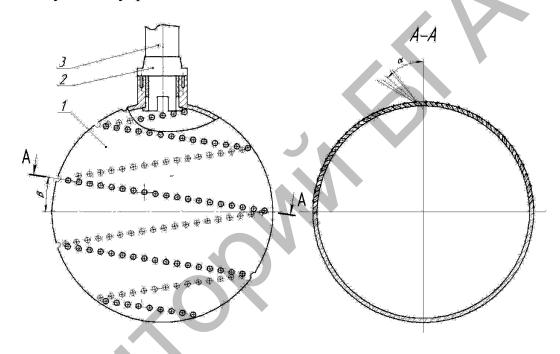
Одна из ключевых составляющих доильной установки, влияющих на качество молока, — система промывки, эффективность работы которой во многом обеспечивает производство продукции в соответствии с современными санитарными нормами качества и безопасности продовольственного сырья [1].


Среди гигиенических требований к производству сырого молока особое внимание уделяется санитарному состоянию доильномолочного оборудования. В связи с этим целью проводимой работы является совершенствование системы промывки молокосборника доильной установки для обеспечения соблюдения санитарных требований и повышения эффективности процесса.

Для решения поставленной задачи разработана конструкция устройства для автоматической промывки молокосборника, ключевым элементом которого является моющая головка, установленная в молокосборнике. Ее отличительная особенность заключается в возможности вращения под давлением жидкости, проходящей через отверстия в сфере, направленные под углом к образующей поверхности и расположенные по эквидистантной кривой с углом наклона к горизонтали. Такая конструкция позволяет обеспечить промывку одновременно всей внутренней поверхности молокосборника [2, 3].

Промываемая доильная установка (рисунок 1) включает в себя промывочный трубопровод 1, доильные аппараты 2, молоко-

провод 3, молокосборник 4, молочный насос 5, напорный трубопровод 6, шланг 7, тройник 8 с установленным на нем запорным вентилем 9 и электромагнитным клапаном 10. Внутри молокосборника 4 установлена моющая головка 11, имеющая корпус с отверстиями, выполненными под углом α к ее образующей поверхности и расположенными по эквидистантной кривой с углом наклона к горизонтали β на определенном расстоянии (рисунок 2).


Запорный вентиль 9 открывают в режиме промывки доильной установки. Электромагнитный клапан 10 в выключенном состоянии разъединяет шланг 7 с напорным трубопроводом 6 и включается одновременно с молочным насосом 5.

1 – промывочный трубопровод; 2 – доильные аппараты; 3 – молокопровод; 4 – молокосборник; 5 – молочный насос; 6 – напорный трубопровод; 7 – шланг; 8 – тройник; 9 – запорный вентиль; 10 – электромагнитный клапан; 11 – моющая головка

Рисунок 1 — **Схема предлагаемого устройства** для автоматической промывки молокосборника

Устройство для автоматической промывки верхней части молокосборника работает следующим образом. В режиме промывки доильной установки моющая жидкость по промывочному трубопроводу 1 проходит через доильные аппараты 2, молокопровод 3, промывая все молокопроводящие пути и нижнюю часть молокосборника 4, накапливаясь в нем. При достижении определенного объема собранная жидкость перекачивается молочным насосом 5 по напорному трубопроводу 6. Часть жидкости через тройник 8, открытый запорный вентиль 9 и включенный электромагнитный клапан 10 по шлангу 7 под напором, создаваемым молочным насосом 5, поступает в верхнюю часть молокосборника 4 и затем по штоку – вовнутрь моющей головки 11.

1 – головка; 2 – крышка; 3 – шток

Рисунок 2 – Схема конструкции моющей головки

Моющая жидкость под давлением, создаваемым молочным насосом 5, проходит через отверстия в моющей головке 11. В результате действия реактивной силы образовавшихся струй моющая головка вращается вокруг своей вертикальной оси, а распыляемая моющая жидкость равномерно промывает всю внутреннюю поверхность молокосборника 4.

В режиме доения запорный вентиль 9 закрывают, разъединяя шланг 7 с напорным трубопроводом 6 во избежание перекачки части молока в молокосборник 4 во время работы молочного насоса 5.

Результаты проведенных исследовательских опытов показывают, что при расположении отверстий под углом α , равным 45° к образующей поверхности, и по эквидистантной кривой с углом наклона к горизонтали $\beta = \arcsin{(0,5d \dots d/2d)}$ на расстоянии не более 2d между собой создаются множественные потоки (струи) жидкости со взаимно пересекающимися концентрическими зонами воздействия на внутренней поверхности молокосборника. В результате обеспечивается высокая эффективность и повышается качество процесса промывки молокосборника доильной установки.

Литература

- 1. Ветеринарно-санитарные правила для молочных ферм, организаций, осуществляющих деятельность по производству молока, на соответствие Единым ветеринарным (ветеринарно-санитарным) требованиям стран участников Таможенного союза. 2011 г.
- 2. НИРС 2011: сб. тезисов докладов респ. науч. конф. студентов и аспирантов Республики Беларусь, 18.10.2011 г., Минск / редкол. С.В. Абламейко [и др.]. Минск: Изд. центр БГУ, 2011. 637 с.
- 3. Устройство для автоматической промывки молокосборника: пат. 7995 Респ. Беларусь, МПК А 01Ј 5/00, 7/00 / А.И. Пунько, В.Н. Дашков, А.Н. Леонов, В.В. Носко, М.В. Иванов; заявитель УО «БГАТУ». № и 20110590; заявл. 18.07.2011; опубл. 28.02.2012 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. -2012. № 1. С. 196.