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Исследована корреляция между потенциально индуцированной дегра-
дацией (ПИД) кремниевых солнечных элементов и морфологическими из-
менениями их поверхности. Методами циклической вольтамперометрии 
и атомно-силовой микроскопии установлен двухстадийный механизм де-
градации. Зафиксировано снижение эффективности фотоэлектрическо-
го преобразования на (16,2 ± 0,8) % и увеличение шероховатости поверхно-
сти в 9,2 раза, обусловленное селективным травлением и накоплением 
дефектов. Результаты подтверждают, что деградация функциональных 
характеристик напрямую связана с изменением топографии поверхности, 
что говорит о необходимости разработки пассивирующих покрытий  
с барьерными свойствами против миграции ионов для подавления ПИД.
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Введение. Потенциально индуцированная деградация функционального 
слоя кремниевых солнечных элементов, обусловленная миграцией ионов из 
подложки и верхнего слоя кремния в антиотражающее покрытие и эмиттер 
под действием электрического поля, приводит к снижению эффективности фото
электрического преобразования до 30 % по прошествии 3 лет эксплуатации. 
Данный эффект наиболее выражен в кристаллических кремниевых n–p-струк-
турах с SiNₓ-пассивацией при отрицательном смещении модуля относительно 
земли (–600…–1000 В) в условиях комбинированного облучения в видимом  
и инфракрасном диапазоне и повышенной влажности.

Физический механизм ПИД связан с формированием проводящих каналов 
в объеме Si вследствие электрохимической коррозии p–n-перехода, что иссле-
довано в [1–2]. Это явление наиболее распространено для кристаллических 
кремниевых фронтальных (n–p) фотопреобразователей и наиболее интенсив-
но развивается, когда модули находятся под отрицательным напряжением от-
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носительно земли [3]. Явление ПИД, возникающее в модулях с отрицательной 
полярностью цепи, можно полностью избежать, если каркас панели выпол-
нить из диэлектрических фототермостойких материалов с достаточной меха-
нической прочностью, в остальных случаях деградация свойств неизбежно 
должна сопровождаться деградацией поверхности.

Результаты и обсуждение. Исследование деградации проводили для эле-
ментов, отработавших в условиях фотоэлектрической электростанции от 1 года 
до 4 лет, а также в экспериментальных условиях с использованием потенцио-
стата-гальваностата P-40X в двухэлектродной ячейке, где в качестве рабочего 
электрода выступал исследуемый образец площадью 4 см2, а электрода срав-
нения – хлорсеребряный электрод (Ag/AgCl). Температура поддерживалась  
в диапазоне 55–60 °С. Освещенность – 100 Вт/м2. Испытания проводились  
в режиме циклической вольтамперометрии в течение 720 ч при потенциале 
Ecorr (коррозионном потенциале), что позволяет изучить электрохимические 
процессы окисления и восстановления, а также оценить электрохимическую 
стабильность исследуемого материала. Аналогично тому, как проводились иссле-
дования для образцов конструкций тонкопленочных ИК-излучателей на основе 
MoSi2 [4]. Для изучения поверхности применяли атомно-силовую микроско-
пию (NT-206, Microtestmachines Co.) в контактном режиме с площадью скани-
рования 20 × 20 мкм2. Обработка проводилась при помощи SurfaceExplorer.

Результаты 720-часовых циклических вольтамперометрических исследо-
ваний для образцов солнечных элементов, не работавших в качестве элемен-
тов фотоэлектрических станций, демонстрируют выраженную деградацию 
электрохимической системы с суммарной потерей эффективности (16,2 ± 0,8) %. 
При проведении испытаний наблюдается уменьшение амплитуды окисли-
тельно-восстановительных пиков на (19,3 ± 2,1) % (p < 0,05); анодный сдвиг 
потенциалов пиков на (42 ± 6) мВ (n = 15); увеличение площади вольтамперо-
метрических петель на (38,7 ± 3,2) % (R2 = 0,96). При этом происходило замет-
ное повышение зарядового сопротивления на (24,8 ± 1,5) %.

Временной анализ процесса деградации позволяет предположить двухста-
дийный процесс деградации: на начальном этапе (0–600 ч) он описывается 
экспоненциальным законом (k = 0,0032 ч–1), следующая стадия соответствует 
параболической кинетике деградации (k = 0,0078 ч–1). Наблюдаемые процессы 
схожи с результатами натурных испытаний на опытных образцах кремниевых 
фотоэлементов, представленными в работе [5].

Анализ АСМ-изображений экспериментально состаренных образцов (рис. 1) 
показал формирование четко различимых структурных элементов, увеличе-
ние амплитуды поверхностных неровностей. Так, для исходного образца диа-
пазон высот составляет 7,0 нм. Испытания в течение 360 ч приводят к его экс-
поненциальному росту до 33,5 нм, после 600 ч рост значительно ускоряется  
и после 720 ч диапазон высот уже составляет 64,6 нм (в 9,2 раза больше исход-
ного).
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Рис. 1. Топография поверхности монокристаллического кремниевого фотоэлемента:  
а – исходного; б – после 360 ч; в – после 720 ч вольтамперометрических исследований 

Переход от квазигомогенной морфологии к выраженно рельефной сопро-
вождается ростом шероховатости поверхности в прогрессии, что, по-видимо-
му, свидетельствует о процессах, аналогичных селективному травлению (се-
лективной коррозии), о накоплении поверхностных дефектов и формировании 
критических дефектов, способных ускорить деградацию материала. Рельеф 
поверхности становится более выраженным. В первом случае (рис. 1, а) по-
верхность относительно гладкая, с небольшими перепадами высот. Во втором 
(рис. 1, б) уже появляются более высокие пики и более глубокие впадины.  
В третьем (рис. 1, в) амплитуда неровностей еще больше увеличивается. Сто-
ит обратить внимание на то, что изменение минимальных и максимальных 
значений высот неплохо качественно согласуется с кинетикой деградации эф-
фективности.
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Рис. 2. Топография поверхности монокристаллического кремниевого фотоэлемента:  
а – наработка 1 год; б – наработка 3 года; в – наработка 4 года

Топография фотоэлементов, работавших значительное время в составе фо-
тоэлектрической станции (рис. 2), позволяет говорить о качественно подоб-
ных изменениях поверхности. Так, после 2 лет работы картина и дефекты по-
верхности подобны тому, что наблюдается после 180–200 ч испытаний. Это 
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демонстрирует адекватность предложенного метода оценки ПИД-деградации 
солнечных элементов и тонкопленочных конструкций для них. Шерохова-
тость первого образца достигает 260 нм. Это показывает, что поверхность уже 
имеет значительные неровности. После 2 лет эксплуатации шероховатость до-
стигает 420 нм. Это немного больше, чем в первом случае, что может указы-
вать на увеличение шероховатости или ускорение эрозии поверхности. Тре-
тий образец имеет значительные дефекты структуры по сравнению с первыми 
двумя изображениями, особенно в области вблизи лицевого контакта, что мо-
жет свидетельствовать о наличии значительных температурных индуциро-
ванных приложенным потенциалом дефектов на поверхности. 

В целом можно сделать вывод о значительном увеличении шероховатости 
и появлении более выраженных структур на поверхности при более продол-
жительной эксплуатации (воздействии потенциала и облучения), что позволя-
ет предположить необратимость указанных процессов. 

Заключение. Предложенные методы ускоренных испытаний адекватно 
моделируют реальные условия эксплуатации, что позволяет прогнозировать 
срок службы фотоэлектрических систем и оптимизировать их конструкцию 
для подавления ПИД. Можно сделать вывод, что наблюдаемое изменение то-
пографии поверхности свидетельствует о прогрессирующей деградации. Та-
ким образом, ранее показанные [5] возможности регенерации солнечных эле-
ментов будут ограничены деградацией структуры непосредственно топогра-
фии поверхности, особенно в случае тонкопленочных фотопреобразователей, 
что указывает на перспективность разработки пассивирующих покрытий, 
аналогичных представленным в работе [6], для нивелирования снижения эф-
фективности в процессе эксплуатации.
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