УДК 664.726.9

Груданов В.Я., д.т.н., профессор, Бренч А.А., к.т.н., доцент

Белорусский государственный аграрный технический университет (БГАТУ) г. Минск, Республика Беларусь

ОБОСНОВАНИЕ РАЦИОНАЛЬНЫХ ПАРАМЕТРОВ ВИБРАЦИИ ВИБРОПНЕВМАТИЧЕСКОГО ОБОРУДОВАНИЯ

Несмотря на разнообразие типов мясоизмельчительных машин, в ряде случаев они не обеспечивают выполнение технологических требований по качественному измельчению мясного сырья. В работе эмульситаторов часто наблюдается ухудшение качества отрезания и затаскивание пленок и волокон в образующийся между ножом и решеткой зазор: необходимо постоянное плотное прилегание вращающихся ножей к плоскостям решеток, что в свою очередь приводит к более интенсивному износу трущейся пары и к снижению эксплуатационной надежности машины.

Комплексные исследования структурно-механических и ряда технологических характеристик фарша при измельчении [1,2] не позволяют научно обоснованно подойти к расчету, осуществлению и прогнозированию этого процесса с целью получения готовых продуктов высокого качества при стабилизированных выходах. В результате любого механического воздействия (перемешивания, растирания, измельчения, резания и пр.) на продукт изменяются величины его физических свойств и технологические показатели. Для получения желаемого эффекта необходимо подвести к продукту определенное количество полезной энергии, которая вызывает изменение качества продукта. Другая часть энергии из общей расходуется на преодоление сил сопротивления и трения, преобразуясь в теплоту.

Решетка эмульситатора (перфорированная пластина) должна иметь одинаковую пропускную способность по всей рабочей поверхности и минимальное гидравлическое (аэродинамическое) сопротивление на прокачку рабочего тела.

Разобьем теперь решетку (рис. 1) на условные концентрические окружности, радиусы которых определяются по формуле:

$$R_n = (\sqrt{\Phi})^n R_0, n = 1, 2, 3, 4...,$$

где R_0 - радиус центрального отверстия;

 Φ – коэффициент «золотой» пропорции (Φ = 1,618) [3].

Отметим, что отверстия в кольцах располагаются на центральных радиусах каждого кольца. При этом предположении нетрудно показать, что пропускная способность любого кольца будет примерно одинаковой, если выбирать количество отверстий в каждом кольце равным соответствующим числу Фибоначчи. Действительно, пропускная способность n-го кольца с числом отверстий a равна

$$K_{i,n} = \frac{a_i f_0}{\pi (R_n^2 - R_{n-1}^2)},$$

где $f = \pi r_0^2$ - площадь отверстия.

Соответственно для (i+1)-го кольца с числом отверстий (n+1) имеем

$$K_{i+1,n+1} = \frac{a_{n+1}f_0}{\pi(R_{i+1}^2 - R_i^2)},$$

По условию $K_{i,n} \approx K_{i+1,n+1}$, следовательно

$$\frac{a_n f_0}{\pi (R_i^2 - R_{i+1}^2)} : \frac{a_{n+1} f_0}{\pi (R_{i+1}^2 - R_i^2)} = 1$$

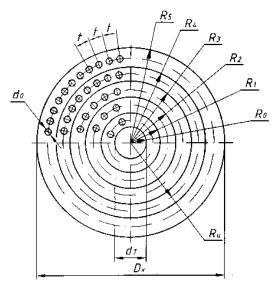


Рисунок 1 - Схема решетки:

 D_{κ} - диаметр наружного корпуса перегородки; d_T - диаметр посадочного отверстия; d_0 - диаметр отверстий; R_0 - радиус посадочного отверстия; R_1 - радиус первого условного кольца; $R_{2\dots 5}$ - радиусы второго...пятого условных колец; R_{μ} - центральный радиус n-го условного кольца

Отсюда получаем:

$$\frac{a_{n+1}}{a_n} \approx \frac{R_{i+1}^2 - R_i^2}{R_i^2 - R_{i-1}^2} = \frac{\alpha^{i+1} R_0^2 - \alpha^i R_0^2}{\alpha^i R_0^2 - \alpha^{i-1} R_0^2} = \Phi$$

Таким образом, чем больше количество отверстий a_n в кольцах, тем точнее будет соблюдаться условие $K_{i,n} \approx K_{i+1,n+1}$ и, тем самым, будет уменьшаться аэродинамическое (гидравлическое) сопротивление перегородки.

Данная модель справедлива при любом диаметре отверстий и различных их количествах, но значения диаметров отверстий и их число должно быть принято из ряда чисел Фибоначчи [4].

В колбасном OAO цехе «Ошмянский мясокомбинат» ДЛЯ проведения исследований был разработан И изготовлен экспериментальный стенд, состоящий из промышленного эмульситатора KS F10/031 и контрольно-измерительных

приборов.

Конструктивными и режимным входными регулируемыми параметрами эмульситатора выбраны коэффициент проходного сечения ножевой решетки (K_{np}), толщина решетки (σ , мм), частота вращения ножа (n_{np} , об/мин) и коэффициент заполнения загрузочной воронки (K_3).

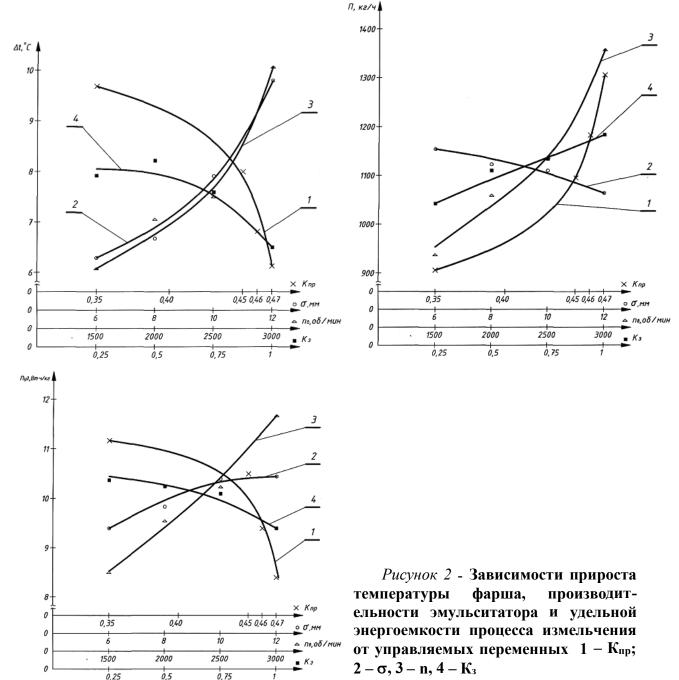
Коэффициент проходного сечения ножевой решетки, определяется по формуле

$$K_{np} = \frac{d_p^2 - d_{n.o.}^2}{d_o^2 \cdot z},$$

где d_p — диаметр решетки, м; $d_{n.o.}$ — диаметр посадочного отверстия, м; d_o — диаметр отверстия в ножевой решетке, м; z — количество отверстий в ножевой решетке.

В результате произведенных расчетов для серийной решетки с диаметром отверстий 10 мм $K_{np1}=0,46$; для разработанной решетки с диаметром отверстий 10 мм $K_{np2}=0,47$; для серийной решетки с диаметром отверстий 5 мм $K_{np3}=0,35$; для разработанной решетки с диаметром отверстий 5 мм $K_{np2}=0,45$.

Также, одним из определяющих факторов влияющих на качество и энергоемкость процесса измельчения мясного сырья в эмульситаторах является толщина ножевой решетки, которая варьировалась в пределах от 6 до 12 мм (σ_1 = 6 мм, σ_2 = 8 мм, σ_3 = 10 мм, σ_4 = 12 мм).


Коэффициент заполнения загрузочной воронки варьировался в пределах от 0,25 до 1 (K_{31} = 0,25, K_{32} = 0,5, K_{33} = 0,75, K_{34} = 1).

Для определения оптимальных режимных параметров работы эмульситатора, в эксперименте задавали частоту вращения ножа в диапазоне от 1500 до 3000 об/мин (n_1 = 1500 об/мин, n_2 = 2000 об/мин, n_3 = 2500 об/мин, n_4 = 3000 об/мин).

В качестве выходных параметров выбраны производительность эмульситатора (Π , кг/ч), прирост температуры сырья во время измельчения (Δt , ^{0}C) и удельная энергоемкость процесса (n_{yg} , Bтч/кг).

После обработки результатов эксперимента получены зависимости прироста температуры, производительности и удельной энергоемкости процесса от управляемых

переменных (коэффициента проходного сечения решетки K_{np} ; толщины решетки σ , частоты вращения п и коэффициента заполнения воронки К₃, представленные на рис. 2.

Для прогнозирования и расчетов основных технологических и энергетических

характеристик обрабатываемого сырья получены следующие уравнения
$$\Delta t = 0.0038 K_{np}^{-1,29} \sigma^{0.63} n^{0.66} K_{_3}^{-0.11}; \ \Pi = 70.53 K_{np}^{1.05} \sigma^{-0.1} n^{0.51} K_{_3}^{0.09}; n_{_{y\partial}} = 0.13 K_{_{np}}^{-0.72} \sigma^{0.15} n^{0.44} K_{_3}^{-0.05};$$

 $K_{\text{пр}}$ – коэффициент проходного сечения ножевой решетки; σ – толщина ножевой решетки, мм; п – частота вращения ножа, об/мин; К₃ – коэффициент заполнения загрузочной воронки.

Полученные экспериментальные зависимости удельной энергоемкости процесса тонкого измельчения мясного сырья, производительности и прироста температуры сырья от режимных и конструктивных особенностей эмульситатора доказывают возможность применения разработанных конструкций режущего инструмента.

Вывод

В результате проведенных исследований разработаны и изготовлены новые конструкции ножевых решеток эмульситатора, имеющие одинаковую пропускную способность по всей рабочей поверхности, минимальное гидравлическое сопротивление на прокачку рабочего тела, и наибольшую пропускную способность.

Новый режущий механизм успешно прошел производственные сравнительные испытания в колбасном цеху ОАО «Ошмянский мясокомбинат» на базе промышленного эмульситатора KS F10/031.

Применение разработанного режущего инструмента в зависимости от требуемой степени измельчения позволяет: снизить прирост температуры на 15,1...18,3%, повысить производительность на 10,3...18,1% и уменьшить удельную энергоемкость на 7,1...10,8 %

Литература

- 1. Тимощук, И.И. Общая технология мяса и мясопродуктов/ И.И. Тимощук, Н.А. Головаченко, С.А. Сенников.- Урожай, 1989.- 216с.
- 2. Пелеев, А.И. Технологическое оборудование предприятий мясной промышленности/ А.И. Пелеев М.: Пищевая пром-сть, 1971.-520с.
- 3. Груданов, В.Я. «Золотая» пропорция в инженерных задачах / В.Я. Груданов.-Могилев.: МГУ им. А.А. Кулешова, 2006.- 288 с.
- 4. Решетка к измельчителю мясо-костного сырья./ Груданов В.Я., Манько А.П., Иванцов В.И., Белохвостов Г.И.// Патент РФ №2047368. М.кл. В02С 18/36, заявлено 16.11.92., опубл. 10.11.95. Бюл №31.

УДК 579.2.663.18

Гудима В.В., науковий співробітник, **Науменко О.В.,** к.т.н., старший науковий співробітник

Інститут продовольчих ресурсів (ІПР) НААН, м.Київ, Україна

ІННОВАЦІЙНІ ЗАКВАШУВАЛЬНІ КУЛЬТУРИ ДЛЯ ВИРОБНИЦТВА КЕФІРУ

Виробництво кефіру регулюється міжнародними та державними нормативними документами. Згідно з Codex Standard 243-2003, до нормальної мікрофлори кефірної закваски відносять такі основні групи бактерій: дріжджі (лактозозброджувальні Kluyveromyces marxianus та ті, що не ферментують лактозу, - Saccharomyces unisporus, Saccharomyces cerevisiae i Saccharomyces exiguus); гомо- і гетероферментатиівні молочнокислі мікроорганізми родів Leuconostoc, Lactococcus, молочнокислі палички Lactobacillus kefiri, $Lactobacillus \ casei$, оцтовокислі бактерії $Acetobacter \ aceti$. Роль цих мікроорганізмів ϵ важливою, оскільки саме вони, розвиваючись у тісному симбіозі під час ферментування молока, забезпечують специфічні органолептичні показники та функціональну активність готового продукту [1-4]. Відповідно до чинного ДСТУ 4417:2005, кефір є продуктом змішаного молочнокислого та спиртового бродіння, який виробляють сквашуванням молока симбіотичною кефірною закваскою на кефірних грибках або концентратом грибкової кефірної закваски. Він характеризується однорідною, в'язкою, з порушеним або непорушеним згустком (залежно від технології виробництва). Нині одержання кефіру у традиційний спосіб з використанням виробничої закваски на кефірних грибках у промисловості застосовується рідко через трудомісткість та значні матеріальні й енергетичні витрати. Це спонукало до створення інноваційних заквасок, які б забезпечували одержання «класичного» кефіру. На сьогодні поширеними є біотехнології одержання сухих бактеріальних концентратів прямого