- В.Я. Груданов, д-р техн. наук, проф. (БГАТУ, Минск)
- **А.А. Бренч,** канд. техн. наук, доц. (БГАТУ, Минск)
- **Л.Т. Ткачева,** канд. техн. наук, доц. (БГАТУ, Минск)

НОВЫЙ РЕЖУШИЙ МЕХАНИЗМ ЭМУЛЬСИТАТОРА

Для тонкого измельчения мясного сырья при производстве колбасных изделий в ряде случаев применяются эмульситаторы. Данные машины оснащены режущим механизмом, состоящим из вращающейся с валом двигателя ножевой головки, оснащенной 3-мя или 6-ю сменными лезвиями (вставками) и решеткой, закрепляемой в корпусе режущей камеры. Наличие осевой регулировки зазора между ножевыми вставками и решеткой позволяет изменять пропускную способность, температуру и степень измельчения обрабатываемого продукта.

Несмотря на разнообразие типов мясоизмельчительных машин, в ряде случаев они не обеспечивают выполнение технологических требований по качественному измельчению мясного сырья. В работе эмульситаторов часто наблюдается ухудшение качества отрезания и затаскивание пленок и волокон в образующийся между ножом и решеткой зазор: необходимо постоянное плотное прилегание вращающихся ножей к плоскостям решеток, что в свою очередь приводит к более интенсивному износу трущейся пары и к снижению эксплуатационной надежности машины.

При скользящем резании сопротивление перерезанию волокон и стенок клеток продукта уменьшается с возрастанием угла скольжения. Однако, в системе «нож-решетка» необходимо использовать не только законы скользящего резания, но и максимальную длину режущей кромки лезвия. На рисунке представлена схема определения коэффициента скольжения по длине лезвия в трущейся паре нож-решетка.

Режущая кромка лезвия 4 вращающегося ножа 3 проходит по касательной cc к внутренней окружности $R_{\it вн}$. В этом случае длина l_1 режущей кромки лезвия 4 будет максимальной, а коэффициент скольжения $K_{\it β}$ – наибольшим. При увеличении y $K_{\it β}$ уменьшается.

При $y = \text{const } K_{\beta}$ возрастает с увеличением a. Если a = 0, $K_{\beta} = 0$, т. е. имеет место рубящее резание.

Таким образом, расположение режущей кромки лезвия наклонно по касательной cc к внутренней окружности $R_{\it вн}$ ножевой решетки позволяет получить наибольшую длину l_1 лезвия 4 и, как следствие, создать наилучшие условия для скользящего резания и процесса измельчения в целом.

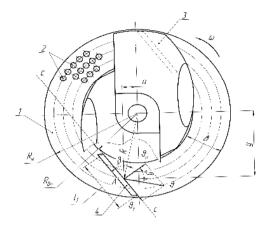


Рис. Схема определения коэффициента скольжения по длине лезвия: 1 – ножевая решетка; 2 – отверстия решетки; 3 – вращающийся нож; 4 – лезвие ножа; l_1 – длина режущей кромки лезвия; R_n – наружный радиус решетки; R_{an} – внутренний радиус решетки; cc – касательная к внутренней окружности R_{an} ; V – линейная скорость произвольной точки A; V , V – нормальная и касательная составляющие линейной скорости V; θ – угол скольжения; a, y – координаты точки A; R – радиус вращения точки A; θ – ширина кольца; θ – угловая скорость ножа

В результате проведенной работы были разработаны новые конструкции режущего механизма эмульситатора. Режущие кромки лезвий ножа выполнены наклонно по касательной к внутреннему радиусу ножевой решетки и имеют максимальную длину, что обеспечивает высококачественный процесс скользящего резания. Разработаны новые конструкции ножевых решеток эмульситатора, имеющие одинаковую пропускную способность по всей рабочей поверхности, минимальное гидравлическое сопротивление на прокачку рабочего тела, и наибольшую пропускную способность.

Новый режущий механизм успешно прошел производственные сравнительные испытания в колбасном цеху ОАО «Ошмянский мясокомбинат» (Республика Беларусь) на базе промышленного эмульситатора КЅ F10/031. Применение разработанного режущего инструмента в зависимости от требуемой степени измельчения позволяет: снизить прирост температуры на 15,1...18,3%, повысить производительность на 10,3...18,1% и уменьшить удельную энергоемкость на 7,1...10,8%.