Литература

- 1. Потенциально-индуцированная деградация (PID) фотоэлектрических массивов [Электронный ресурс] // SolarHome. URL: https://www.solarhome.ru/basics/solar/pv/potential-induced-degradation-pv-array.htm (дата обращения: 15.08.2025).
- 2. Анализ видов деградации фотоэлектрических модулей и их вольтамперных характеристик / Д. Ю. Широков, А. В. Пашенцев, А. С. Григоров // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. − 2021. − № 38. − С. 5–20. − DOI: https://doi.org/10.15593/2224-9397/2021.4.01.
- 3. Ученые создали нейросеть для контроля качества солнечных батарей [Электронный ресурс] // TACC Наука. URL: https://nauka.tass.ru/nauka/18782191 (дата обращения: 15.08.2025).
- 4. Изучение потенциально индуцированной деградации элементов для оптических ИК-газоанализаторов / С. М. Барайшук [и др.] // Материалы и структуры современной электроники : материалы XI Международной научной конференции, Минск, 16-18 октября 2024 г. Минск : БГУ, 2025. С. 23–27.
- 5. Разработка системы обнаружения дефектов солнечных панелей на основе алгоритма YOLO v5 / А. А. Белов, А. В. Моисеев, Д. С. Кренделев // Датчики и системы. 2022. Т. 25, № 4. С. 34-44. DOI: https://doi.org/10.18127/j20700814-202204-04.
- 6. Analysis of YOLO Models for Solar Panel Defect Detection // 2025 5th International Conference on Power Electronics, Computing and Control (ICPECC). 2025. P. 1–6. DOI: 10.1109/ICPECA63937.2025.10928871.
- 7. Разработка и исследование методов и средств диагностики фотоэлектрических модулей и станций: дис. канд. техн. наук: 05.09.03 / Белов Алексей Александрович. Новосибирск, 2021. 145 с.

УДК 621.316; 004.8

ОБУЧЕНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ АКУСТИЧЕСКОГО РАСПОЗНАВАНИЯ ДЕФЕКТОВ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

М.И. Есипович, студент 3 курса АЭФ

Научный руководитель: С.М. Барайшук, канд. ф.-м. наук, доцент УО «Белорусский государственный аграрный технический университет»,

г. Минск, Республика Беларусь

Асинхронные электродвигатели составляют основу электропривода в различных отраслях промышленности. Их отказ может привести к значительным финансовым потерям, связанным с простоем производства, дорогостоящим ремонтом и ущербом от выпуска бракованной продукции. В этой связи задачи мониторинга

технического состояния и ранней диагностики неисправностей АД являются крайне важными [1].

технического состояния и ранней диагностики неисправностей АД являются крайне важными [1].

Нами рассматривается задача определить возможность повышения надежности и бесперебойности работы асинхронных лектродвигателей (АД), являющихся ключевым элементом современных промышленных систем при помощи их непрерывной автоматизированной акустической диагностики. Предложен метод диагностики дефектов АД на основе анализа их акустических сигналов с использованием глубоких нейронных сетей. Традиционные методы вибродиагностики часто требуют дорогостоящего оборудования и контакта с агрегатом, что ограничивает их применение. Акустический анализ, осуществляемый с помощью микрофонов, представляет собой альтернативную бесконтактную и дистанционную технологию. Однако сложность и нестационарность звуковых сигналов в работе реализована полытка применения сверточных нейронных сетей (СNN) для автоматического выделения признаков и классификации акустических образов различных дефектов, таких как повреждение подшипников, дисбаланс ротора, межвитковое замыкание статора. Разработанный подход позволяет создать систему предиктивного обслуживания, способную заблаговременно обнаруживать возникающие неисправности, минимизируя простои и предогвращая катастрофические отказы оборудования [2].

Акустический анализ представляет собой перспективное бесконтактное решение. Звук, создаваемый электродвигателем, содержит информацию о его механическом и электромагнитном состоянии. Любой развивающийся дефект модулирует соответствующий уникальный акустический сигнал, обладающий характерными признаками. Задача заключается в том, чтобы выделить эти признаки на фоне шума и помех среды.

В исследованиях [1, 3] показано, что искусственные нейронные сети (ИНС) обладают способностью к решению задач классификации сложных нелинейных данных, в частности акустических сигналов. Они позволяют автоматизировать процесс распознавания дефектов.

Для обучения и валидации модели был создан датаест акустических сигналов от асинхронного двигателя АИР56В4 мощностью 0,18 кВт в р

Сырые аудиосигналы были напрямую поданы на вход нейронной сети Google Teachable Machine, которая использует преобразование сигнала в форму, пригодную для обработки при помощи коротко-временное преобразование Фурье для получения спектрограмм — двумерных изображений, где по осям отложены время, частота и амплитуда (представленная цветом).

Датасет был разделен на обучающую (70%), валидационную (20%) и тестовую (10%) выборки. Обучение проводилось в течение 5000 эпох. График обучения показал, что модель успешно сходится: значение потерь на тренировочной и валидационной выборках. Переобучения удалось избежать благодаря использованию небольших сдвигов по времени и частоте в тренировочных записях. Одной из особенностей такого набора данных и обучения является создание модели, устойчивой к шуму, важность этого описана в [5].

Как видно из таблицы 1 и таблицы 2, предложенная модель продемонстрировала высокую эффективность. Общая точность на тестовой выборке составила 88%. Наивысшие значения точность и полнота достигнуты для классов "Исправен" и "Замыкание".

Таблица 1 – Матрица ошибок на тестовой выборке

Реальный / Предсказанный	Исправен	Подшипник	Дисбаланс
Исправен	400	10	0
Подшипник	0	280	20
Дисбаланс	0	10	270
Замыкание	0	0	10

Таблица 2 – Метрики качества классификации

Класс	Общая точность	Точность	Полнота	Мера баланса
Исправен	0.89	1.00	0.94	0.96
Подшипник	0.88	0.96	0.92	0.92
Дисбаланс	0.88	0.94	0.96	0.92
Замыкание	0.89	1.00	0.95	0.93
Макроусредненное значение метрик	0.88	0.97	0.93	0.92
по классам				

Небольшая путаница возникает между дефектами "Подшипник" и "Дисбаланс", что ожидаемо, так как оба дефекта проявляются в низкочастотной области спектра и имеют схожие гармонические составляющие. Однако общая Мера баланса на уровне 0.92 подтверждает надежность классификатора.

В данной работе успешно разработан и протестирован метод акустической диагностики асинхронных электродвигателей на основе глубоких сверточных нейронных сетей. Экспериментальные результаты подтверждают, что обученная CNN способна с высокой точностью (88%) классифицировать различные типы дефектов по их акустическим проявлениям.

Основные преимущества предложенного подхода: бесконтактность, (диагностика может проводиться дистанционно с помощью микрофона); автоматизация; устойчивость к шуму (модель показала способность выделять информативные признаки в условиях производственных помех).

Система может быть интегрирована в системы мониторинга для раннего обнаружения дефектов.

Литература

- 1. Петров А.Н., Петрова Е.В. Применение нейронных сетей для диагностики электромеханических систем // Инженерный вестник. -2020. -№ 5. C. 45–54.
- 2. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications // Mechanical Syst. and Signal Processing. 2014. Vol. 42. P. 314–334.
- 3. Сидоров И.К. Автоматизация распознавания дефектов оборудования электрических сетей с помощью искусственных нейронных сетей // Электротехника. 2019. № 12. С. 28–34.
- 4. Tamilselvan, P., Wang, P. Failure diagnosis using deep belief learning based health state classification // Reliability Engineering & System Safety. 2013. Vol. 115. P. 124–135.
- 5. Zhang, W., Peng, G., Li, C., Chen, Y., Zhang, Z. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals # Sensors. -2017.-Vol. 17(2).-P. 425.

УДК 620.9:004:001.895

ВНЕДРЕНИЕ ЦИФРОВЫХ ТЕХНОЛОГИЙ В АПК

Н.Л. Труханова студентка 2 курса АЭФ; **А.В. Чумаков** студент 2 курса АЭФ

А.в. чумаков студент 2 курса АЭФ Научный руководитель: В.Ф. Клинцова

УО «Белорусский государственный аграрный технический университет»,

г. Минск, Республика Беларусь

Цель цифровой трансформации энергетики – преобразовать энергетическую инфраструктуру с помощью внедрения современ-