Елеушинов А.А., магистр; **Молдажанов А.К.**, PHD; **Азизов А.А.**, магистр

HAO «Казахский государственный аграрный исследовательский университет», г. Алматы, Республика Казахстан

ВАРИАТИВНЫЕ СИСТЕМЫ ЭЛЕКТРОПРИВОДА АКТИВНЫХ РАБОЧИХ ОРГАНОВ МОБИЛЬНЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН ДЛЯ САДОВ И ВИНОГРАДНИКОВ

Аннотация. В статье рассмотрены актуальные требования к вариативным системам электропривода активных рабочих органов мобильных сельскохозяйственных машин для садов и виноградников, проведен анализ типов электродвигателей и предложена концепция универсальной системы управления.

Abstract. The article examines current requirements for variable electromechanical drive systems of active working units in mobile agricultural machinery for orchards and vineyards, analyzes types of electric motors, and proposes a concept for a universal control system.

Ключевые слова: электропривод, вариативная система, сельскохозяйственные машины, управление, мобильная техника

Keywords: electrical drive, variable system, agricultural machinery, control system, mobile equipment

Введение. Современные требования к мобильной сельскохозяйственной технике, особенно для садов и виноградников, включают высокую энергоэффективность, точность управления и экологичность. Перевод активных рабочих органов с гидравлических на электромеханические приводы снижает эксплуатационные затраты и упрощает обслуживание благодаря отказу от масла и уплотнений [1]. Цель статьи – проанализировать ключевые требования, выполнить расчеты и предложить модульную систему управления на базе ПМСД (постоянно-магнитного синхронного двигателя), обеспечивающую широкий диапазон регулирования скорости (не менее 1:100) и высокий КПД (не ниже 92 %) [2].

Обзор активных рабочих органов.

Основные инструменты машин для садов и виноградников:

Обрезные ножницы и секаторы – кратковременные пиковые нагрузки, до 7–10 Н·м на закусывание ветки.

Опрыскиватели – непрерывная работа при 1500–2000 об/мин и 3–5 Н·м момента.

Шнеки и вибрационные сборщики – требуются средние скорости 1000-2500 об/мин и моменты до $20~\mathrm{H\cdot m}$.

Мотыги и рыхлители — пиковые нагрузки до 15 $H\cdot M$ при низких скоростях. Требования к динамике — быстрый отклик (< 100 мс) и точность позиционирования (< 1 мм), что достигается векторным управлением ПИД-регулятором [6].

Требования к электроприводам.

При выборе привода учитывают:

Пиковая мощность и крутящий момент. Для мелких инструментов 0,5-5 кВт (до $10 \text{ H}\cdot\text{m}$), для крупногабаритных – до 15-20 кВт (до $50 \text{ H}\cdot\text{m}$) [4].

Диапазон регулирования скорости ≥ 1:100. Обеспечивается VFD (Variable Frequency Drive) с поддержкой векторного управления для сохранения КПД во всём диапазоне [1].

КПД не ниже 92 % в номинальном режиме и ≥ 88 % при нагрузках 20–100 % [2]. **Масса и габариты** ограничиваются междурядьями (до 50 кг на узел, требования ISO 500 для навесного оборудования) [5].

Электропитание – аккумулятор 48–96 В или 200–400 В, совместимость с солнечными панелями и генераторами.

ЕМС и защита — соответствие IEC 61800-3, IP65-IP66 для защиты от пыли и влаги.

Расчет характеристик приводов

На примере среднего ПМСД (см. **Таблица 1**) для пикового момента $M_{\rm TD}=16~{\rm H\cdot M}$ и базовой скорости 3000 об/мин мощность:

$$P = \frac{2\pi nM}{60} = \frac{2\pi \cdot 3000 \cdot 16}{60} \approx 5027 \text{ Bt.}$$

Резерв мощности принимаем 20 %, итого выбираем двигатель 6 кВт [4].

Таблица 1 – Типичные параметры ПМСД

Motor Type	Nominal Power (kW)	Nominal Torque (Nm)	Nominal Speed (rpm)	Efficiency (%)
PMSM Small	2,5	8	3000	95
PMSM Medium	5	16	3000	94
PMSM Large	15	47,7	3000	93

Диаграммы:

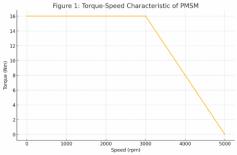


Рисунок 1 – Характеристика «крутящий момент – скорость» (турнирный участок при 3000 об/мин, затем линейное снижение)



Рисунок 2 – КПД двигателя в зависимости от нагрузки (максимум ~95 % при 70–80 % нагрузки)

Структура системы управления

Модульная архитектура включает (рис. 3):

Энергетический модуль (аккумулятор + солнечные панели + система защиты).

Инвертор на основе ARM+RTOS, реализующий MPDTC (model predictive direct torque control) для повышения КПД до 95 % [3].

Сенсорный и беспроводной интерфейс (экран + Bluetooth/Wi-Fi) для выбора режима (режим «ножницы», «опрыскиватель» и т. д.).

Набор датчиков: токовый, термодатчики обмоток, энкодеры для обратной связи.

ПО с алгоритмами самодиагностики и ОТА-обновления.

Рисунок 3 — Структура системы управления вариативной системы электропривода активных рабочих органов мобильных сельскохозяйственных машин

Выводы Предложенная система обеспечивает широкий диапазон регулирования скорости $\geq 1:100$, высокий КПД (до 95 %), компактность и защиту по стандартам EMI/EMC. Модульность позволяет быстро переоборудовать машину под разные активные органы, снижая время простоя и эксплуатационные затраты.

Список использованной литературы

- 1. Stover, R. Variable frequency drives for irrigation pumps // USU Extension. 2022. (extension.usu.edu)
- 2. Zhang X., Wang Y., Chen P. Battery management strategies for off-grid agricultural machinery // Energies. 2020. (MDPI)
- 3. Research on efficiency improvement of PMSM with MPDTC considering core loss // Energies. 2022. (MDPI)
- 4. Permanent magnet synchronous motor for electric tractor // ResearchGate. 2014. (ResearchGate).
 - 5. ISO 500: Agricultural tractors Power take-off types 1–4 // ISO. 2014. (Wikipedia)
- 6. Control techniques for PMSM in precision agriculture // CAE Access. 2019. (caeaccess.org)

Summary. This paper investigates the design and implementation of variable electromechanical drive systems for active working units in mobile agricultural machinery used in orchards and vineyards. A comprehensive review of common tools–pruning shears, sprayers, harvesters, and tillage implements–highlights their distinct torque and speed requirements. Key selection criteria for permanent-magnet synchronous motors (PMSMs) are discussed, including peak torque (up to 50 Nm), speed regulation range (≥ 1:100), and efficiency (> 92 %). Detailed calculations demonstrate the sizing of a 6 kW PMSM for mid-range applications, supported by torque–speed and efficiency–load curves. The proposed modular control architecture–with an ARM-based inverter, advanced field-oriented and predictive control algorithms, and wireless operator interface–ensures high performance, compactness, and compliance with EMI/EMC and IP65–66 standards. The system's flexibility and self-diagnostic capabilities promise reduced downtime and lower operational costs.

УДК 631.1

Игамбердиев А.К.¹, доктор технических наук, профессор; Гурнович М.Н.², начальник отдела международных связей ¹НИУ «Ташкентский институт инженеров ирригации и механизации сельского хозяйства», г. Ташкент, Республика Узбекистан ²Учреждение образования «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ В АГРОПРОМЫШЛЕННОМ КОМПЛЕКСЕ УЗБЕКИСТАНА

Аннотация. Представленный материал посвящен концепции внедрения современных цифровых технологий в агропромышленный комплекс с целью