АВТОМАТИЗАЦИЯ ЛИНИИ ПРИГОТОВЛЕНИЯ ТВОРОГА

Мякинник Е.Е., Володченков А.В. УО «Белорусский государственный аграрный технический университет», г. Минск, РБ

Аннотация

Тезисы посвящены использованию контроллеров для автоматизации технологических процессов. Автоматизация технологических процессов является одним из решающих факторов повышения производительности и улучшения условий труда. Все существующие и строящиеся промышленные объекты в той или иной степени оснащаются средствами автоматизации.

Введение

Процесс сквашивания молока используется в производстве кисломолочных продуктов, творога, сливочного масла, сыра. В молочной промышленности собственно процесс сквашивания молока не рассматривается как метод консервирования, хотя продукты, изготовленные с его использованием, более устойчивы по отношению к действию посторонней микрофлоры, чем свежее молоко.

Однако основным назначением производства продуктов из пастеризованного, стерилизованного или топленого молока путем сквашивания его заквасками чистых молочнокислых культур является получение продуктов с новыми вкусовыми качествами.

Молочная отрасль Беларуси имеет доминирующее значение в перерабатывающей промышленности, так как производит самые важные для населения страны продукты питания. По данным Министерства здравоохранения Республики Беларусь, от общего веса продуктового набора потребительской корзины жителей наибольший вес (44%) приходится на долю молока и молочных продуктов.

ший вес (44%) приходится на долю молока и молочных продуктов. В молоке содержится более 200 различных веществ. Усвояемость белка молока составляет 95%, молочного жира и сахара - 98%. Молочный белок является самым дешевым белком животного происхождения. Его себестоимость в 3-4 раза ниже себестоимости белка, содержащегося в мясе.

Молоко и получаемые из него продукты содержат большинство необходимых организму пищевых веществ, оптимально сбалансированных и хорошо усвояемых организмом. 30-40% общей калорийности пищи, потребляемой человеком, должны приходиться на молоко и молочные продукты.

Характеристика и описание технологического процесса приготовления творога

Готовления творога

Существуют два способа производства творога – традиционный (обычный) и раздельный. Раздельный способ производства творога позволяет ускорить процесс отделения сыворотки и значительно снизить при этом потери. Сущность раздельного способа заключается в том, что молоко, предназначенное для выработки творога, предварительно сепарируют. Из полученного обезжиренного молока вырабатывают нежирный творог, к которому затем добавляют необходимое количество сливок, повышающих жирность творога до 9 или 18 %.

необходимое количество сливок, повышающих жирность творога до 9 или 18 %.

По методу образования сгустка различают два способа производства творога: кислотный и сычужно-кислотный. Первый основывается только на кислотной коагуляции белков путем сквашивания молока молочно-кислыми бактериями с последующим нагреванием сгустка для удаления излишней сыворотки. Таким способом изготовляется творог нежирный и пониженной жирности, так как при нагревании сгустка происходят значительные потери жира в сыворотку. Кроме того, этот способ обеспечивает выработку нежирного творога более нежной консистенции. Пространственная структура сгустков кислотной коагуляции белков менее прочная, формируется слабыми связями между мелкими частицами казеина и хуже выделяет сыворотку. Поэтому для интенсификации отделения сыворотки требуется подогрев сгустка.

При сычужно-кислотном способе свертывания молока сгусток формируется комбинированным воздействием сычужного фермента и молочной кислоты. Под действием сычужного фермента казеин а первой стадии переходит в параказеин, на второй — из параказеина образуется сгусток. Казеин при переходе в параказеин смещает изоэлектрическую точку с рН 4,6 до 5,2. Поэтому образование сгустка под действием сычужного фермента происходит быстрее, при более низкой кислотности, чем при осаждении белков молочной кислотой, полученный сгусток имеет меньшую кислотность, на 2... 4 ч ускоряется технологический процесс. При сычужно-кислотной коагуляции кальциевые мостики, образующиеся между крупными частицами, обеспечивают высокую прочность сгустка. Такие сгустки лучше отделяют сыворотку, чем кислотные, так как в них быстрее происходит уплотнение пространственной структуры белка. Поэтому подогрев сгустка для интенсификации отделения сыворотки не требуется.

Сычужно-кислотным способом изготовляют жирный и полужирный творог, при котором уменьшается отход жира в сыворотку. При кислотном свертывании кальциевые соли отходят в сыворотку, а при сычужно-кислотном сохраняются в сгустке. Это необходимо учитывать при производстве творога для детей, которым необходим кальций для костеобразования. Технологический процесс производства творога традиционным способом выполняется при помощи комплексов оборудования для приема, охлаждения, переработки, хранения и транспортирования сырья.

Заключение

В процессе исследования была разработана система автоматического управления линией сквашивания молока с использованием контроллера AL2 24MRD. На рисунке 1 приведена схема подключения контроллера. Предложенная микропроцессорная система автоматического управления реализует алгоритм управления оборудованием с учетом технологических требований. При этом требования обеспечивается достаточно просто через управление процессом контроллера.

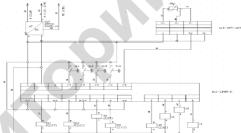


Рисунок 1. Схема подключения контроллера

Литература

- 1. Фурсенко, С.Н. Автоматизация технологических процессов : учеб. пособие / С.Н.Фурсенко, Е.С. Якубовская, Е.С. Волкова. Минск: БГАТУ, 2007. 592 с.
- 2. Программируемый контроллер AL2-24MR-D: программирование. MITSUBISHI, 2008. 701 с.

АВТОМАТИЗАЦИЯ ПРОЦЕССА ОЧИСТКИ СТОЧНЫХ ВОД МОЕК АВТОТРАКТОРНОЙ ТЕХНИКИ

Бойко М.А.; Крутов А.В. доцент, к.т.н.