Литература

- 1. Карпенко А.Н., Зеленев А.А., Халанский В.М. Сельскохозяйственные машины / А.Н. Карпенко, А.А. Зеленев, В.М. Халанский. –М.: Колос, 1976. C.55-58.
 - 2. Патент на изобретение РФ № 2297125 С1, МПК А01В21/08, 2007.
- 3. Патент на изобретение РФ № 2384985 С1, МПК A01B21/08; F16C31/04, 2010.
- 4. Борона дисковая : патент 18037 С1 Респ. Беларусь, МПК А 01В 21/08 ; F 16С 31/04 / И.Н.Шило, Н.Н.Романюк, В.А. Агейчик ; заявитель Белорус. гос. аграр. техн. ун-т.— № а 20111088 ; заявл. 08.08.2011 ; опубл. 28.02.2014 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці.—2014.—№ 1.— С.48—49.

Abstract

The article proposes an original design of disc harrows, the use of which will improve its operational reliability, reduce complexity, reduce weight and cost.

УДК 633.521:631.172

РЕЖИМЫ ЭКСПЛУАТАЦИИ ПРЕСС-ПОДБОРЩИКОВ И ПЛОТНОСТЬ РУЛОНОВ ЛЬНОТРЕСТЫ

В.А. Шейченко, ² д.т.н., ст.н.с., А.С. Лимонт, ² к.т.н., ст.н.с., В.М. Климчук, ³ к.т.н., ст.н.с.

¹ Национальный научный центр «Институт механизации и электрификации сельского хозяйства» Национальной академии аграрных наук Украины (НААНУ), пгт. Глеваха, ²Житомирский национальный агроэкологический университет, Институт сельского хозяйства Полесья НААНУ, г. Житомир, Украина

С повышением скорости движения пресс-подборщиков и изменением установки регулятора плотности рулонов от минимального до максимального положения плотность рулонов соответственно уменьшается и возрастает по прямолинейным зависимостям. С изменением отношения длины слоя стеблей в рулоне к длине ленты поднятой тресты для его формирования плотность рулонов возрастает по логарифмическим зависимостям, а с повышением линейной массы слоя стеблей в рулоне уменьшается по гиперболической кривой.

Введение

Одной из составляющих технического сервиса машин для растениеводства является организация их рационального использования. Это касается и ис-

пользования средств механизации уборки льнотресты, которую сейчас преимущественно осуществляют по рулонной технологии соответствующими пресс-подборщиками. В Беларуси производят, например, рулонные прессподборщики ПР-Ф-145, ПРМ-150 и ПРИ-150, в России – ПР-145С, а в Украине – ПРН-145 [1]. В Украине было освоено и производство льняного рулонного пресс-подборщика ПР-1,2Л с прессовальной камерой (ПК) переменного объема и сенного ППР-110 с ПК постоянного объема. В предлагаемом сообщении предусматривается осветить некоторые вопросы использования прессподборщиков на уборке льнотресты, являющейся одной из важных операций в проблеме механизированного производства льна-долгунца.

Работу пресс-подборщиков характеризируют и оценивают с использованием таких показателей как технологические параметры рулона и его товарные качества. К первым относят, например, длину поднимаемой ленты тресты, необходимой для формирования рулона, длину и массу слоя стеблей тресты в сформированных рулонах, а к товарным качествам рулона – его плотность [2].

И. М. Дударев [3] указывает, что в рулонах формирования прессподборщиками с ПК переменного объема плотность слоев тресты уменьшается от центра к периферии, а в рулонах сформированных пресс-подборщиками с ПК постоянного объема наоборот — возрастает от 100 до 120 кг/м³. В работе [4] отмечено, что высокая плотность рулонов сена и соломы обеспечивает экономичность использования пресс-подборщиков, поскольку уменьшаются затраты на сетку, пленку и вообще на обмоточный материал и на перевозку рулонов (пресс-подборщики RoundPack 1250/1550, а также Comprima F155XC и Comprima V150XC).

Согласно исследованиям [5] с повышением объемной массы прессованной тресты с учетом ее влажности прочность льнотресты снижается по мере увеличения продолжительности нахождения ее в прессованном состоянии. В разработанном образце пресс-подборщика плотность прессования льносырья не превышала 200 кг/м³.

Некоторые из вопросов формирования рулонов и определения их плотности освещены ранее [2, 7]. Однако представленная в этих работах информация требует дальнейших обобщений.

Цель исследования — повысить эффективность механизированной уборки льнотресты путем улучшения использования пресс-подборщиков с ПК переменного и постоянного объемов. Задачи исследования: 1) исследовать влияние скорости движения и положений регулятора плотности рулонов (ПРПР) на их плотность; 2) определить длину поднятой с поля ленты тресты и слоя стеблей в формируемых рулонах в зависимости от скорости движения при различных ПРПР; 3) проанализировать плотность сформированных рулонов в зависимости от отношения длины слоя стеблей в рулоне к длине ленты тресты, поднятой с поля, и от линейной массы слоя стеблей в рулоне.

Объектом исследования был технологический процесс подбора тресты и формирования рулонов с определением их плотности. Исследовали льняной пресс-подборщик ПР-1,2Л и сенной ППР-110, имевших ПК соответственно переменного и постоянного объемов. Пресс-подборщик ПР-1,2Л был отрегулирован на формирование рулонов, которые по диаметру и ширине (высоте) были одинаковы с рулонами формирования пресс-подборщиком ППР-110. Регулятор плотности рулона (РПР) устанавливали в минимальное, основное и максимальное положения. В пресс-подборщике ПР-1,2Л минимальное ПРПР (клапана гидросистемы) соответствовало расстоянию от маховичка до корпуса клапана 10 мм, основное – 5 мм, а максимальное – при полностью закрытом клапане (нулевое расстояние). В пресс-подборщике ППР-110 минимальное ПРПР соответствовало расстоянию от конца винта натяжения пружины до полки его крепления 50 мм, основное – 60 и максимальное – 70 мм. Условия исследований и методика определения независимых и зависимых переменных приведены в предыдущих публикациях [2, 7].

Обработка экспериментальных данных [2] осуществлена с использованием методов математической статистики и стандартных компьютерных программ.

Основная часть

В пределах исследуемых скоростей движения их повышение сопровождается уменьшением плотности рулонов по линейным зависимостям (рис. 1). Степень приближения аппроксимирующих прямолинейных уравнений к экспериментальным значениям плотности рулонов в зависимости от типа ПК прессподборщиков, ПРПР и скорости движения уборочных агрегатов оценивали R^2 коэффициентами, принимающими значения в пределах 0.992...1.0. Плотность рулонов, сформированных пресс-подборщиком ППР-110 несколько превышала плотность рулонов, которые сформированы пресс-подборщиком ПР-1,2Л. Во всем диапазоне регулировок ПРПР при использовании пресс-подборщика ПР-1,2Л с ПК переменного объема с повышением скорости движения плотность рулонов уменьшалась от 108,8 до 74,5 кг/м³, а при использовании прессподборщика ППР-110 с ПК постоянного объема – от 128,8 до 78,9 кг/м³. По значениям угловых коэффициентов соответствующих уравнений с повышением скорости движения на 1 км/ч плотность рулонов, сформированных в прессподборщике ПР-1,2Л, с учетом ПРПР уменьшалась на 2,6...3,8 кг/м³. В рулонах формирования пресс-подборщиком ППР-110 повышение скорости движения на $1\ \text{км/ч}$ сопровождалось уменьшением плотности рулонов на $3,4...6,5\ \text{кг/м}^3$. При этом со смещением РПР от минимального до максимального положения по анализируемым угловым коэффициентам с повышением скорости движения происходит более интенсивное уменьшение плотности рулонов.

Смещение РПР от минимального до максимального положения на 1 мм в пределах исследуемых скоростей движения вызывает увеличение плот-

ности рулонов формирования пресс-подборщиком ПР-1,2Л с ПК переменного объема на 1,6...2,1 кг/м³, а формирования пресс-подборщиком ППР-110 с ПК постоянного объема — на 1,01...1,7 кг/м³. Это увеличение плотности описывается уравнениями прямых, степень приближения которых к экспериментальным данным оценивается R^2 -коэффициентами, изменяющимися в пределах 0,969...0,994.

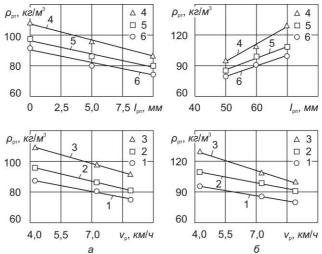


Рисунок 1 - Изменение плотности рулонов $\rho_{\rm pr}$, сформированных в прессподборщиках с ПК переменного (a) и постоянного (δ) объемов в зависимости от скорости движения $v_{\rm p}$ и ПРПР $l_{\rm pr}$: 1 – минимальное; 2 – основное; 3 – максимальное; 4 – скорость движения $v_{\rm p}$ = 4,26 км/ч; 5 – $v_{\rm p}$ =7,25; 6 – $v_{\rm p}$ =8,90 км/ч

Технологические параметры рулонов, которые сформированы прессподборщиками с различными ПК, при их использовании на скоростях движения в пределах 4,26...8,90 км/ч при различных ПРПР на подборе ленты тресты линейной массы $m_{\rm nr}$ =0,33 кг/м, приведены в табл. 1.

Таблица 1 - Технологические параметры рулонов тресты, которые сформированы пресс-подборщиками ПР-1,2Л и ППР-110 с ПК соответственно переменного и постоянного объемов

Такионариналий нараметр рудона	Пресс-подборщик		
Технологический параметр рулона	ПР-1,2Л	ППР-110	
Длина ленты, поднятой с поля и спрессованой в			
рулон, $l_{\rm cr}$, м	253348	348548	
Длина слоя стеблей в рулоне, $l_{\rm mp}$, м	135406	231761	
Линейная масса слоя стеблей в рулоне, m_{cn} , кг/м	0,300,63	0,180,39	

Из табл. 1 видно, что линейная масса слоя стеблей в рулоне, который сформирован пресс-подборщиком ППР-110, на 0,12...0,24 кг/м меньше линейной массы слоя стеблей в рулоне формирования пресс-подборщиком ПР-1,2Л. Это объясняется различиями кинематических параметров работы пресс-подборщиков.

Длина поднятой с поля ленты тресты $l_{\rm cr}$ для формирования рулона и длина слоя стеблей в рулоне $l_{\rm mp}$ с повышением скорости движения уменьшаются соответственно по прямолинейным и степенным зависимостям (табл. 2). Рассматриваемые длины больше в пресс-подборщике ППР-110 с ПК постоянного объема по сравнению с пресс-подборщиком ПР-1,2Л с ПК переменного объема. Со смещением РПР от минимального до максимального положения указанные длины несколько возрастают.

Изменение плотности рулонов в зависимости от отношения $\lambda_{\rm дc}$ длины слоя стеблей, который запрессован в рулон, к длине ленты тресты, которая поднята с поля, приведено на рис. 2, a.

В пресс-подборщике ПР-1,2Л с ПК переменного объема $\lambda_{\rm дc}$ принимало значение в пределах 0,512...1,11, а в пресс-подборщике ППР-110 с ПК постоянного объема — 0,66...1,39. С увеличением отношения $\lambda_{\rm дc}$ плотность рулонов увеличивается. Для выяснения характера этого увеличения осуществлено выравнивание экспериментальных значений плотности рулонов уравнениями прямых с положительным угловым коэффициентом и степенными, экспоненциальными и логарифмическими зависимостями. Лучшее выравнивание наблюдалось в случае аппроксимации экспериментальных данных логарифмическими кривыми, которые приведены на рисунке, а их уравнения представлены в табл. 3.

Таблица 2 - Изменение длины поднятой с поля ленты тресты $l_{\rm cr}$ (м) и длины слоя стеблей в рулоне $l_{\rm mp}$ (м) при соответствующем ПРПР в зависимости от скорости движения $v_{\rm b}$ (км/ч) агрегата

Simonia () (in peruru						
Положение	Пресс -подборщик					
регулятора	ПР-1,2Л с ПК переменного		ППР-110 с ПК постоянного			
плотности	объема		объема			
рулона	уравнения связи	R^2	уравнения связи	R^2		
Минимальное	$l_{\rm cr} = 347,37 - 10,29 v_{\rm p}$	0,976	$l_{\rm cr} = 489,98 - 15,92 v_{\rm p}$	0,999		
Основное	$l_{\rm cr} = 355,96 - 7,98 v_{\rm p}$	1,000	$l_{\rm cr} = 564,16 - 18,40 \ v_{\rm p}$	0,998		
Максимальное	$l_{\rm cr} = 429,18 - 12,22 \ v_{\rm p}$	0,994	$l_{\rm cr} = 649,82 - 23,98 \ v_{\rm p}$	0,999		
Минимальное	$l_{\rm mp} = 1819,615 \ v_{\rm p}^{-1,186}$	0,999	$l_{\text{iiip}} = 3650,686 \ v_{\text{p}}^{-1,258}$	0,999		
Основное	$l_{\text{mp}} = 2069,425 \ v_{\text{p}}^{-1,212}$	1,000	$l_{\rm mp} = 4217,154 \ v_{\rm p}^{-1,262}$	0,999		
Максимальное	$l_{\rm mp} = 2382,033 \ v_{\rm p}^{-1,220}$	1,000	$l_{\text{imp}} = 5038,565 v_{\text{p}}^{-1,301}$	0,999		

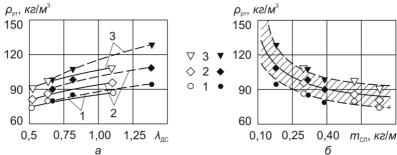


Рисунок 2 - Изменение (a) плотности рулона $\rho_{\rm pr}$, который сформирован прессподборщиком ПР-1,2Л с ПК переменного объема (сплошные линии) и прессподборщиком ППР-110 с ПК постоянного объема (пунктирные), в зависимости от отношения $\lambda_{\rm дc}$ длины слоя стеблей в рулоне к длине ленты тресты, поднимаемой с поля, и влияние (δ) линейной массы $m_{\rm cn}$ слоя стеблей в рулоне на его плотность $\rho_{\rm pr}$: 1 – положение РПР минимальное; 2 – основное; 3 – максимальное

Из рис. 2, a видно, что при использовании пресс-подборщиков с различными ПК со смещением РПР от минимального до максимального положения плотность рулонов увеличивается. Использование пресс-подборщика ППР-110 сопровождается формированием рулонов, имеющих большую плотность по сравнению с рулонами формирования пресс-подборщиком ПР-1,2Л.

По угловым коэффициентам уравнений прямых (табл. 3) прослеживается, что с увеличением $\lambda_{\rm дc}$ на единицу смещение РПР от минимального до максимального положения сопровождается более интенсивным увеличением плотности рулонов. Плотность рулонов, которые формирует прессподборщик ПР-1,2Л, с повышением $\lambda_{\rm дc}$ на единицу возрастает на 19,5...28,5 кг/м³, а рулонов формирования пресс-подборщиком ППР-110 — на 20,3...39,6 кг/м³.

Из рис. 2, δ видно, что при увеличении линейной массы слоя стеблей в рулоне $m_{\rm cл}$ в пресс-подборщиках с различными ПК разница между плотностью рулонов, полученных при максимальном и минимальном ПРПР, уменьшается от 34,1 до 16,7 кг/м³, т.е. более, чем в 2 раза. В среднем разница в плотности рулонов, сформированных при различных ПРПР в зависимости от $m_{\rm cл}$, составляла 22,2 кг/м³. Для выяснения характера изменения $\rho_{\rm pr}$ в зависимости от $m_{\rm cл}$ их значения подвергли корреляционнорегрессионному анализу, объединив в одну статистическую выборку.

Определено, что коэффициент корреляции между $\rho_{\rm pt}$ и $m_{\rm cn}$ имел отрицательное значение 0,658 при корреляционном отношении $\rho_{\rm pt}$ по $m_{\rm cn}$ 0,691 [7].

Таблица 3 - Прогностические функции* изменения плотности рулонов $\rho_{\rm pt}$ в зависимости от отношения $\lambda_{\rm дc}$ длины слоя стеблей в рулоне к длине ленты тресты,

которую поднимают с поля пресс-подборщиками

Положение	Пресс-подборщик				
регулятора	ПР-1,2Л с ПК переменного		ППР-110 с ПК постоянного объе-		
плотности ру-	объема		ма		
лона	уравнения	R^2	уравнения	R^2	
Минимальное	$\rho_{\rm pt} = 65,48 + 19,54 \lambda_{\rm gc}$	0,917	$ \rho_{\rm pt} = 66,80 + 20,32\lambda_{\rm gc} $	0,958	
	$\rho_{\rm pt} = 85,54 + 15,82 \ln \lambda_{\rm gc}$	0,951	$\rho_{\rm pt} = 88,21 + 20,67 \ln \lambda_{\rm gc}$	0,982	
Основное	$ \rho_{\rm pt} = 69,28 + 24,16\lambda_{\rm gc} $	0,971	$ \rho_{\rm pt} = 76,65 + 23,49 \lambda_{\rm gc} $	0,941	
	$\rho_{\rm pt} = 93,97 + 19,29 \ln \lambda_{\rm gc}$	0,990	$\rho_{\rm pr} = 101,3 + 23,96 \ln \lambda_{\rm gc}$	0,971	
Максимальное	$\rho_{\rm pt} = 77,76 + 28,50\lambda_{\rm gc}$	0,970	$\rho_{\rm pt} = 74,01 + 39,64 \lambda_{\rm gc}$	0,991	
	$\rho_{\rm pt} = 106.8 + 22.76 \ln \lambda_{\rm gc}$	0,989	$\rho_{\rm pt} = 115,7 + 39,98 \ln \lambda_{\rm gc}$	0,999	
*) В числителе прямолинейная зависимость, в знаменателе – логарифмическая.					

Расчеты показали, что изменение $\rho_{\rm pr}$ в зависимости от $m_{\rm cn}$ уместно описать уравнением неравносторонней гиперболы:

$$\rho_{\text{pt}} = 73,03 + 6,96/m_{\text{сп}}$$
 при $\lambda_{\text{пв}} = 0,10$ и $S_{\text{y}} = 9,5$ кг/м³, (1)

где $\lambda_{\text{пв}}$ — показатель оценки выравнивания экспериментальных данных соответствующей аппроксимирующей функцией, который представляет отношение основной ошибки (9,7 кг/м³) выравнивания экспериментальных значений плотности рулонов гиперболической функцией (1) к среднему значению плотности рулонов (94,0 кг/м³); S_{y} — ошибка уравнения (1) криволинейной регрессии, определяемая по среднему квадратическому отклонению распределения $\rho_{\text{рт}}$ 13,1 кг/м³ и корреляционному отношению $\rho_{\text{рт}}$ по $m_{\text{сл}}$.

Из приведенных данных видно, что усредненная разница между плотностью рулонов, которая определена при максимальном и минимальном ПРПР, соизмерима с удвоенной ошибкой уравнения (1). На рис. 2, δ приведены кривые, построенные по уравнению (1) с учетом его ошибки $S_y = 9.5$ кг/см³. В заштрихованную на рисунке зону попало 77,8 % значений « $\rho_{\text{рт}}$ » и « $m_{\text{сл}}$ », которые взяты для расчета уравнения (1). По асимптоте уравнения (1) определяем, что предельное снижение плотности рулонов тресты, вызываемое повышением линейной массы слоя стеблей в рулоне составляет 73 кг/м³. С учетом результатов исследований [2, 7] повреждение стеблей, которое не превышает 10 %, может быть обеспечено при изменении линейной массы слоя стеблей в рулоне в пределах 0,25...0,53 кг/м. В эксплуатационных условиях этого можно достичь путем соответствующих техно-

логических регулировок пресс-подборщиков, выбором скоростного режима их работы и формированием ленты тресты, которую подбирают.

Заключение

С повышением скорости машинных агрегатов от 4,26 до 8,90 км/ч плотность рулонов, которые формирует пресс-подборщик ПР-1,2Л с ПК переменного объема, уменьшается от 108,8 до 74,5 кг/м³, а в рулонах формирования пресс-подборщиком ППР-110 с ПК постоянного объема — от 128,8 до 78,9 кг/м³. С изменением установки регуляторов плотности рулонов в исследуемых пресс-подборщиках от минимального до максимального положения плотность сформированных рулонов растет по прямолинейным зависимостям. Определено изменение плотности в зависимости от скорости движения прессподборщиков с учетом положения РПР, длины ленты поднятой тресты и длины слоя стеблей в рулоне к длине ленты поднятой тресты для его формирования от 0,512 до 1,39 плотность рулонов растет по логарифмическим зависимостям.

При одинаковых положениях РПР плотность рулонов, сформированных пресс-подборщиком ППР-110, превышает плотность рулонов формирования пресс-подборщиком ПР-1,2Л. С повышением линейной массы слоя стеблей в рулоне от 0,18 до 0,63 кг/м их плотность уменьшается по гиперболической зависимости, достигая асимптотического значения 73 кг/м 3 . Выявленные зависимости следует учитывать при проектировании организации уборки льнотресты и ее осуществлении.

Литература

- 1. Комаренко В. Прес-підбирачі: огляд конструкцій та результати випробувань / В. Комаренко, М. Костюнін // Техніка і технології АПК. 2014. № 3 (54). С. 13–15.
- 2. Порівняння технологічних параметрів і товарних якостей рулонів льонотрести, сформованих пресами з камерами змінюваного і постійного об'єму / [В.М. Климчук, В.В. Любченко, В.І. Камінський, Г.І. Карпека] // Механізація та електрифікація с. г. Глеваха: ННЦ «ІМЕСГ» УААН, 2008. Вип. 92. С. 493 500.
- 3. Дударєв І.М. Дослідження впливу параметрів шару льоносировини на інтенсивність вентилювання / І.М. Дударєв // Проблемы легкой и текстильной промышленности Украины. 2010. № 1 (16). С. 69 72.
- 4. Все дело в плотности // Современная сельхозтехника и оборудование: інформаційний щомісячник «Пропозиція». 2011. Вип. 1. С. 68 70.
- 5. Егоров М.Е. Подъем льняной тресты и прессование ее в кипы/ М.И. Егоров, Р.И. Моторина // Тр. Всесоюз. ордена Трудового Красного Знаме-

нии НИИ льна: экономика, механизация льноводства, первичная обработка льна. – Торжок, 1972. – Вып. 10. – С. 155 – 164.

- 6. Машини для збирання зернових та технічних культур: [посіб. для підготовки фахівців з напряму «Процеси, машини та обладнання агропромислового виробництва» в аграр. вищих навч. закл. ІІ-ІV рівнів акредитації / [Колектив авторів]; за ред. В.І. Кравчука, Ю.Ф. Мельника. Дослідницьке: УкрНДПВТ ім. Л. Погорілого, 2009. 296 с.
- 7. Формування рулонів льонотрести прес-підбирачами / А.С. Лімонт, В.М. Климчук, В.В. Любченко [та ін.] // Вісн. аграр. науки. 2011. № 8. C. 45 48.

УДК 631.365:22:6331

ВЫБОР ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ МАШИН ЗЕРНООЧИСТИТЕЛЬНО-СУШИЛЬНОГО КОМПЛЕКСА

А.В. Новиков¹, к.т.н., доцент, Т.А. Непарко¹, к.т.н., доцент, В.П. Чеботарев², к.т.н., доцент

¹ УО «Белорусский государственный аграрный технический университет», ²РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск, Республика Беларусь

Изложены основные принципы оценки поточности работы зерноочистительно-сушильного комплекса.

Введение

Переход зерновой отрасли республики на промышленную основу должен базироваться на освоении поточных способов производства, внедрении компьютеризированных поточных технологий послеуборочной обработки зерна. Отличительными признаками компьютеризированных промышленных поточных технологий являются: завершенность работ по всему технологическому процессу - от приема комбайнового зернового вороха до закладки на хранение и хранения полученного зерна; разделение технологического процесса на отдельные операции и выполнение каждой операции специализированной машиной; последовательное перемещение обрабатываемого потока зерна по операциям технологического процесса и расположение машин и оборудования в порядке, обеспечивающем последовательность выполнения операций; компьютерный контроль и управление технологическими операциями на протяжении всего технологического процесса.

Основная часть

В процессе уборки, послеуборочной обработки урожая зерновых культур