ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ

РЕСПУБЛИКА БЕЛАРУСЬ

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (19) **BY** (11) **4409**

(13) U

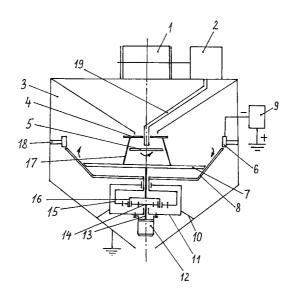
(46) 2008.06.30

(51) МПК (2006) **A 01С 1/06**

ПРОТРАВЛИВАТЕЛЬ СЕМЯН

(21) Номер заявки: и 20070770

(22) 2007.11.05


(54)

(71) Заявитель: Учреждение образования "Белорусский государственный аграрный технический университет" (ВY)

- (72) Авторы: Шило Иван Николаевич; Агейчик Валерий Александрович; Агейчик Михаил Валерьевич (ВҮ)
- (73) Патентообладатель: Учреждение образования "Белорусский государственный аграрный технический университет" (ВҮ)

(57)

Протравливатель семян, содержащий корпус камеры протравливания в форме правильного цилиндра, установленного на раме, нижняя часть которого закрыта днищем, а верхняя часть соосным отверстием соединена с дозатором семян, внутри камеры протравливания в нижней части соосно с цилиндром расположен тарельчатый ротор с возможностью вращения, периферийный край которого образует изгиб вверх, над тарельчатым ротором установлен распределитель семян в виде диска или конуса, жестко соединенный с тарельчатым ротором, между ними расположен распылитель препарата с возможностью вращения, причем внешний диаметр тарельчатого ротора, выполненного из диэлектрического материала, меньше внутреннего диаметра цилиндра, образующего камеру протравливания, над верхним краем тарельчатого ротора с зазором, не превышающим 0,5 мм, жестко установлено кольцо с внутренней цилиндрической поверхностью, внутренний диаметр которого не меньше внутреннего диаметра периферийного края тарельчатого ротора и не больше его наружного диаметра, при этом кольцо электрически соединено с потенциальным выводом высоковольтного источника питания, а все основные элементы протравливателя заземлены, кроме того, распылитель препарата установлен не выше кольца,

отличающийся тем, что тарельчатый ротор выполнен составным в виде выполненных из диэлектрического материала плоского круглого центрального диска и расположенного с зазором вокруг него соосно и под тупым углом периферийным краем в виде обращенной вверх большим основанием боковой поверхности усеченного конуса, причем под плоским круглым центральным диском к корпусу камеры на стержнях жестко крепится корпус планетарного редуктора с фланцевым электродвигателем внизу, соединенным своим валом с ведущим колесом планетарного редуктора, при этом периферийный край в виде обращенной вверх большим основанием боковой поверхности усеченного конуса прикреплен к ведомому центральному колесу планетарного редуктора и имеет центральное отверстие, через которое проходит ведомое водило планетарного редуктора, к которому прикреплен плоский круглый центральный диск и далее сверху распределитель препарата.

(56)

- 1. Патент РФ на изобретение 2219693 С2, МПК А 01С 1/08 // Бюл. № 36. 2003.
- 2. Кузьмин А.В., Чернин И.М., Козинцов Б.С. Расчеты деталей машин. Минск: Вышейшая школа, 1986. С. 188-190.

Полезная модель относится к сельскохозяйственному машиностроению, в частности к устройствам для протравливания семян.

Известен протравливатель семян [1], содержащий корпус камеры протравливания в форме правильного цилиндра, установленного на раме, нижняя часть которого закрыта днищем, а верхняя часть соосным отверстием соединена с дозатором семян, внутри камеры протравливания в нижней части соосно с цилиндром расположен тарельчатый ротор с возможностью вращения, периферийный край которого образует изгиб вверх, над тарельчатым ротором установлен распределитель семян в виде диска или конуса, жестко соединенный с тарельчатым ротором, между ними расположен распылитель препарата с возможностью вращения, причем внешний диаметр тарельчатого ротора, выполненного из диэлектрического материала, меньше внутреннего диаметра цилиндра, образующего камеру протравливания, над верхним краем тарельчатого ротора с зазором, не превышающим 0,5 мм, жестко установлено кольцо с внутренней цилиндрической поверхностью, внутренний диаметр которого не меньше внутреннего диаметра периферийного края тарельчатого ротора и не больше его наружного диаметра, при этом кольцо электрически соединено с потенциальным выводом высоковольтного источника питания, а все основные элементы протравливателя заземлены, кроме того, распылитель препарата установлен не выше кольца.

Такой протравливатель семян не позволяет выполнить равномерную обработку семян препаратом, что снижает эффективность его применения и увеличивает расход препарата. Этот недостаток обусловлен тем, что находящиеся на тарельчатом роторе семена подвергаются слабому воздействию со стороны его поверхности, так как после их контакта с этой поверхностью на семена основное воздействие оказывают лишь силы трения о поверхность тарельчатого ротора, центробежная и кориолисова силы инерции, которых недостаточно для интенсивного переворачивания и перемешивания семян в среде препарата.

Задача, которую решает полезная модель, заключается в улучшении равномерности обработки семян препаратом.

Поставленная задача решается с помощью протравливателя семян, содержащего корпус камеры протравливания в форме правильного цилиндра, установленного на раме, нижняя часть которого закрыта днищем, а верхняя часть соосным отверстием соединена с дозатором семян, внутри камеры протравливания в нижней части соосно с цилиндром расположен тарельчатый ротор с возможностью вращения, периферийный край которого

образует изгиб вверх, над тарельчатым ротором установлен распределитель семян в виде диска или конуса, жестко соединенный с тарельчатым ротором, между ними расположен распылитель препарата с возможностью вращения, причем внешний диаметр тарельчатого ротора, выполненного из диэлектрического материала, меньше внутреннего диаметра цилиндра, образующего камеру протравливания, над верхним краем тарельчатого ротора с зазором, не превышающим 0,5 мм, жестко установлено кольцо с внутренней цилиндрической поверхностью, внутренний диаметр которого не меньше внутреннего диаметра периферийного края тарельчатого ротора и не больше его наружного диаметра, при этом кольцо электрически соединено с потенциальным выводом высоковольтного источника питания, а все основные элементы протравливателя заземлены, кроме того, распылитель препарата установлен не выше кольца, где тарельчатый ротор выполнен составным в виде выполненных из диэлектрического материала плоского круглого центрального диска и расположенного с зазором вокруг него соосно и под тупым углом периферийным краем в виде обращенной вверх большим основанием боковой поверхности усеченного конуса, причем под плоским круглым центральным диском к корпусу камеры на стержнях жестко крепится корпус планетарного редуктора с фланцевым электродвигателем внизу, соединенным своим валом с ведущим колесом планетарного редуктора, при этом периферийный край в виде обращенной вверх большим основанием боковой поверхности усеченного конуса прикреплен к ведомому центральному колесу планетарного редуктора и имеет центральное отверстие, через которое проходит ведомое водило планетарного редуктора, к которому прикреплен плоский круглый центральный диск и далее сверху распределитель препарата.

На фигуре показан схематично общий вид протравливателя семян в разрезе.

Протравливатель семян содержит дозатор семян 1, насос-дозатор рабочей жидкости 2, заземленную камеру протравливателя 3, распределитель семян 4, заземленный распределитель препарата 5, кольцо 6, выполненный из диэлектрического материала плоский круглый центральный диск 7 и расположенный с зазором, исключающим проваливание в него обрабатываемых семян, вокруг него соосно и под тупым углом периферийный край 8 в виде обращенной вверх большим основанием выполненной из диэлектрического материала боковой поверхности усеченного конуса, а также высоковольтный источник питания 9. Под плоским круглым центральным диском 7 к корпусу камеры 3 на стержнях 10 жестко крепится корпус 11 планетарного редуктора [2] с фланцевым электродвигателем 12 внизу, соединенным своим валом 13 с ведущим колесом планетарного редуктора 14, при этом периферийный край 8 в виде обращенной вверх большим основанием боковой поверхности усеченного конуса прикреплен к ведомому центральному колесу 15 планетарного редуктора и имеет центральное отверстие, через которое проходит ведомое водило 16 планетарного редуктора, к которому прикреплен плоский круглый центральный диск 7 и далее сверху распределитель препарата 5. Распределитель семян 4 жестко соединен с плоским круглым центральным диском 7 с помощью шпилек 17.

Распределитель препарата 5 представляет собой дисковый распылитель диаметром 200 мм. Распределитель семян 4 выполнен из диэлектрического материала в виде диска диаметром 320 мм. Внутренний диаметр верхнего периферийного края 8 в виде обращенной вверх большим основанием боковой поверхности усеченного конуса составляет 600 мм. Внутренняя поверхность кольца 6 является цилиндрической диаметром 600 мм и высотой 15 мм. Кольцо 6 выполнено из проводящего материала, электрически соединено с отрицательным полюсом источника питания 9 и прикреплено к камере протравливания 3 держателями 18, выполненными из диэлектрического материала. Зазор между кольцом 6 и верхним периферийным краем 8 в виде обращенной вверх большим основанием боковой поверхности усеченного конуса составляет не более 0,5 мм. Распылитель препарата 5 расположен не выше нижнего уровня кольца 6. Подача препарата на распылитель препарата 5 осуществляется трубкой 19, проходящей от насоса-дозатора 2 через осевое отверстие распределителя семян 4.

Протравливатель семян работает следующим образом.

Перед началом работы включают источник питания 9, электродвигатель 12 и привод (на фигуре не показан) дозатора семян 1 и насоса-дозатора рабочей жидкости 2. Распределитель препарата 5, распределитель семян 4 и плоский круглый центральный диск 7 начинают вращаться в одну сторону, а расположенный с зазором вокруг плоского круглого центрального диска 7 соосно и под тупым углом периферийный край 8 в виде обращенной вверх большим основанием боковой поверхности усеченного конуса - в противоположную [2]. От источника питания 9 на кольцо 6 подается отрицательный потенциал. Семена поступают на вращающийся распределитель семян 4 в количестве, определенном дозатором семян 1, а затем под действием центробежных сил поступают в область взаимодействия с препаратом. Препарат подается через трубку 19 насосом-дозатором 2 на вращающийся распылитель препарата 5. Между кольцом 6 и заземленным распылителем препарата 5 создается электрическое поле. Частицы препарата, отрываясь от кромки вращающегося распылителя препарата 5, приобретают в электрическом поле положительный заряд и попадают в область взаимодействия семян и препарата. Положительно заряженные частицы препарата за счет сил зеркального отображения притягиваются к семенам и обволакивают их. Попадая на плоский круглый центральный диск 7 обработанные семена под действием силы трения о его поверхность, центробежной и кориолисовой сил инерции продолжают перемешиваться друг с другом и с частицами препарата, увеличивая равномерность его распределения по поверхности семян. При дальнейшем попадании семян на вращающийся в противоположную сторону периферийный край 8 в виде обращенной вверх большим основанием боковой поверхности усеченного конуса силы трения, воздействующие на семена, меняют свое направление на противоположное, что существенно увеличивает степень перемешивания семян и соответственно увеличивает равномерность распределения препарата по их поверхности. Зазор 0,5 мм между кольцом 6 и верхним периферийным краем 8 в виде обращенной вверх большим основанием боковой поверхности усеченного конуса позволяет избежать травмирования семян, которые под действием центробежных сил переваливаются через кольцо 6 и попадают в выгрузное устройство (на фигуре не показано). Те частицы препарата, которые не осели на семенах и за счет центробежных сил покинули зону взаимодействия семян и препарата, под действием электрического поля, создаваемого отрицательно заряженным кольцом б и заземленным распылителем препарата 5, изменяют траекторию движения и направляются к поверхности кольца 6, с которого подбираются перемешивающимися семенами.