ЭФФЕКТИВНОЕ ИСПОЛЬЗОВАНИЕ КОРМОВ ПРИ ПРОИЗВОДСТВЕ ГОВЯДИНЫ

В.Ф. Радчиков, д.с.-х.н., проф., В.К. Гурин, к.б.н., доц., В.П. Цай, к.с.-х.н., доц., А.Н. Кот, к.с.-х.н. Республиканское унитарное предприятие «НПЦ НАН Беларуси по животноводству» г. Жодино, Республика Беларусь

А.И. Пунько, к.т.н.

Республиканское унитарное предприятие «Научно-практический центр Национальной академии наук Беларуси по механизации сельского хозяйства»

г. Минск, Республика Беларусь

В.О. Лемешевский, к.с.-х.н.

Учреждение образования «Полесский государственный университет» г. Пинск, Республика Беларусь

Одними из самых главных условий увеличения производства продуктов животноводства, повышения продуктивности молодняка являются рост производства высококачественных кормов и организация полноценного сбалансированного кормления животных. Наукой установлено и практикой подтверждено, что только оно способно помочь сельскохозяйственным животным максимально проявить свой генетический потенциал продуктивности. Полноценное кормление — это, прежде всего, нормированное кормление, которое обеспечивает сбалансированность рационов и наилучшим образом удовлетворяет потребность животных в элементах питания [1–10].

За последние два десятилетия зоотехническая наука о кормлении животных накопила большое количество экспериментальных данных, подтверждающих влияние различных питательных веществ, а также незаменимых аминокислот, витаминов, макро- и микроэлементов, антибиотиков, гормонов, ферментов и других факторов на обмен веществ, эффективность использования корма и образование продукции. Этот материал служит основой для дальнейшего совершенствования теории и практики кормления сельскохозяйственных животных.

Проблема полноценности кормления должна решаться путем применения в рационах добавок, а также биологически активных веществ (микроэлементов, витаминов, ферментов и др.), способствующих повышению питательности рационов. Решающая роль в выполнении поставленных задач принадлежит концентрированным кормам и кормовым добавкам, так как подавляющее количество биологически активных веществ вводится в рацион именно в составе комбикормов.

Исследования по разработке оптимальных вариантов энергопротеиновых добавок в зависимости от структуры рационов, типа кормления, возраста и уровня продуктивности молодняка крупного рогатого скота при выращивании на мясо являются актуальными и востребованы в современных условиях.

Разработка и внедрение научных рекомендаций по эффективному использованию кормов в составе силосно-сенажно-концентрированных рационов является предпосылкой наращивания производства высококачественной говядины.

Цель работы — изучение эффективности использования кормов путем скармливания энергопротеиновых добавок при производстве говядины.

Разработана рецептура добавок для молодняка крупного рогатого скота с включением рапса, люпина, гороха, вики и комплексной минеральной добавки (таблица 1).

Таблица 1. – Состав и питательность белково-витаминно-минеральных добавок (БВМД) для молодняка КРС

Показатели	БВМД1	БВМД2
Рапс, %	45	35
Люпин, %	10	20
Горох, %	10	10
Вика, %	10	10
Витамид, %	25	25
В 1 кг содержится:		
кормовых единиц	1,15	1,09
обменной энергии, МДж	12,4	11,7
сухого вещества, кг	0,72	0,71
сырого протеина, г	232,9	251
переваримого протеина, г	195,2	211,6
сырого жира, г	234,1	195,6
сырой клетчатки, г	76,4	82,8
крахмала, г	84,4	80,9
caxapa, z	48,7	47,7
кальция, г	25,9	25,9
фосфора, г	13,8	13,7
натрия, г	20,6	20,7
магния, г	2,2	2,4
серы, г	7,9	7,9
калия, г	4,3	5,4
железа, мг	17,1	17,2
меди, мг	24,1	24,1
цинка, мг	135,3	135,4
марганца, мг	203,8	203,8
кобальта, мг	3,8	3,9
йода, мг	0,7	0,7
селена, мг	0,64	0,64
витаминов: А, тыс. МЕ	60	60
D, тыс. ME	15,2	15,2
Е, мг	40	40

В составе комбикормов за счет энергопротеиновых добавок осуществлялась полная замена подсолнечного шрота как более дорогостоящего и дефицитного компонента.

Состав суточных рационов молодняка крупного рогатого скота по фактически съеденным кормам был следующим: комбикорм – 2,5 κ г, кукурузный силос – 12,5–12,6 κ г, патока – 0,5 κ г. В рационах телок содержалось 5,63–5,74 κ . ед., 60,5–62,1 MДж обменной энергии, 805,57–815,10 ϵ сырого протеина, 469,3–471,6 ϵ сахара. В структуре рационов комбикорма составили 49–51 %, силос – 42–46, патока – 5–7 % по питательности.

Следует отметить, что соотношение расщепляемого протеина к нерасщепляемому в рационе телок I группы составило 68:32, во II -65:35, в III -62:38, в IV -64:36, V -62:38. Это объясняется тем, что добавки, входящие в комбикорма, подвергали экструзии.

В таблице 2 представлены результаты учета живой массы и среднесуточных приростов молодняка крупного рогатого скота.

Таблица 2. – Изменение живой массы и среднесуточных приростов

	Живая масса, кг		Прирост живой массы		ZOTROTI I KORMOR HO	
Группы	в начале	в конце	валовой, кг среднесуто-		Затраты кормов на 1 <i>ц</i> прироста, <i>ц к.ед</i> .	
	опыта	опыта	валовой, кг	чный, $arepsilon$	т и прироста, и к.ео.	
I контрольная	186	313,5	127,5	$850 \pm 11,0$	6,6	
II опытная	184	318,0	134,0	$893 \pm 12,4$	6,3	
III опытная	182	318,5	136,5	$910 \pm 10,5$	6,2	
IV опытная	187	322,0	135,0	$900 \pm 13,1$	6,3	
V опытная	183	322,1	139,1	$927 \pm 14,1$	6,1	

Включение в состав рационов БВМД на основе местных источников белкового и минерального сырья оказало положительное влияние на энергию роста бычков. В результате использования БВМД $_1$ в количестве 20 % по массе взамен подсолнечного шрота в составе комбикорма (группа II) среднесуточные приросты повысились на 5 %, а в количестве 25 % – на 7 % (группа III). Скармливание БВМД $_2$ в составе комбикорма в количестве 20 и 25 % по массе обеспечило повышение среднесуточных приростов с 850 $_2$ до 900–927 $_2$, или 6 и 9 % соответственно (группы IV и V). Затраты кормов снизились в опытных группах на 5–8 %.

Себестоимость 1 u прироста живой массы в опытных группах снизилась на 6–14 % за счет лучших среднесуточных приростов и более дешевых источников белка (таблица 3).

Таблица 3. – Экономическая оценка использования БВМД

Показатели	Группы				
	I	II	III	IV	V
Скормлено комбикормов в расчете на 1 гол., ц	3,75	3,75	3,75	3,75	3,75
Стоимость 1 и комбикорма, тыс. руб.	35	30	30	30	30
Стоимость потребленных комбикормов, тыс. <i>руб</i> .	131,3	112,5	112,5	112,5	112,5
Стоимость всех потребленных кормов рациона, тыс. <i>руб</i> .	380,7	376,6	357,9	377,4	357,6
Общие затраты на производство валового прироста, тыс. <i>руб</i> .	585,7	579,4	550,7	580,6	550,2
Себестоимость 1 и к. ед., тыс. руб.	45,3	43,8	41,6	43,8	41,6
Затраты кормов на 1 ц прироста, ц к. ед.	6,6	6,4	6,2	6,3	6,1
Себестоимость 1 и прироста, тыс. руб.	457,6	432,4	402,0	430,1	395,8
Прибыль от снижения себестоимости $1 \ \mu$ прироста, тыс. <i>pyб</i> .	_	25,2	55,6	27,5	61,8

Прибыль от снижения себестоимости 1 *ц* прироста составила 25,2–61,8 тыс. *руб*.

Таким образом, в результате исследований разработана рецептура БВМД на основе экструдированного зерна рапса, люпина, гороха, вики, а также витаминноминерального премикса (Витамид) взамен подсолнечного шрота. БМВД входят в состав комбикорма КР-3 в количестве 20–25 % по массе при структуре рационов (% по питательности): кукурузный силос -42–46, комбикорм -49–51, патока -5–7, их использование позволяет получать среднесуточные приросты 900–927 ε при затратах кормов 6,1–6,2 μ κ . $e\partial$. и обеспечивает снижение себестоимости продукции на 6–14 %.

Литература

- 1. Казаровец, Н.В. Сбалансированное кормление молодняка крупного рогатого скота: моногр. / Н.В. Казаровец, В.А. Люндышев, В.Ф. Радчиков, В.К. Гурин, В.П. Цай, А.Н. Кот. Минск: $\mathsf{Б}\mathsf{\Gamma}\mathsf{A}\mathsf{T}\mathsf{Y}, 2012. 280$ с.
- 2. Радчиков, В.Ф. Протеиновое питание молодняка крупного рогатого скота: моногр. / В.Ф. Радчиков, В.П. Цай, Ю.Ю. Ковалевская, В.К. Гурин, А.Н. Кот, Т.Л. Сапсалева,

- А.М. Глинкова, В.О. Лемешевский, В.Н. Куртина // Жодино: Научно-практический центр НАН Беларуси по животноводству, 2013. 119 с.
- 3. Радчиков, В.Ф. Высококачественная говядина при использовании продуктов переработки рапса в кормлении бычков / В.Ф. Радчиков, Т.Л. Сапсалева, С.Н. Пилюк, В.В. Букас, А.Н. Шевцов // Инновации и современные технологии в сельском хозяйстве: сб. по матер. междунар. науч.-практ. конф., г. Ставрополь, 4–5 февраля 2015 г. Ставрополь: Агрус, 2015. Т. 1. С. 300–308.
- 4. Радчиков, В.Ф. Влияние расщепляемости протеина на показатели рубцового пищеварения молодняка крупного рогатого скота / В.Ф. Радчиков, А.Н. Кот, С.И. Кононенко, В.О. Лемешевский, А.М. Глинкова, Н.А. Яцко // Актуальные проблемы интенсивного развития животноводства: сб. науч. тр. Вып. 18, ч. 1 Горки, БГСХА, 2015. С. 291–298.
- 5. Радчиков, В.Ф. Влияние разного уровня легкогидролизуемых углеводов в рационе на конверсию энергии корма бычками в продукцию / В.Ф. Радчиков, В.К. Гурин, В.П. Цай, А.Н. Кот, Т.Л. Сапсалева, А.М. Глинкова // Перспективы и достижения в производстве и переработке сельскохозяйственной продукции: сб. науч. ст. по матер. Междунар. науч.-практ. конф., посвящ. 85-летнему юбилею со дня основания факультета менеджмента (зооинженерного), г. Ставрополь, 16–17 апреля, 2015 г. Ставрополь, 2015. Т. 2. С. 145–153.
- 6. Радчиков, В.Ф. Эффективность использования питательных веществ рационов бычками и процессы рубцового пищеварения в зависимости от фракционного состава протеина в рационе / В.Ф. Радчиков, Ю.Ю. Ковалевская, В.П. Цай, А.Н. Кот, В.А. Люндышев // Стратегия развития зоотехнической науки: тез. докл. междунар. науч.-практ. конф., посвящ. 60-летию зоотехнической науки Беларуси (15–16 окт. 2009 г.) / Науч.-практический центр Нац. акад. наук Беларуси по животноводству; редкол.: И.П. Шейко (гл. ред.) [и др.]. Жодино: Науч.-практический центр НАН Беларуси по животноводству, 2009. С. 258–260.
- 7. Радчиков, В.Ф. Использование питательных веществ рациона бычками и пищеварение в рубце при разном фракционном составе протеина / В.Ф. Радчиков, Ю.Ю. Ковалевская, В.К. Гурин, А.И. Козинец, Е.П. Симоненко, С.И. Пентилюк // Экологические и селекционные проблемы племенного животноводства: научные труды Проблемного совета МАНЭБ «Экология и селекция в племенном животноводстве» / Коллектив авторов. Под общей редакцией академика МАНЭБ Е.Я. Лебедько. Брянск: Изд-во БГСХА, 2009. Вып. 2. С. 85–87.
- 8. Радчиков, В.Ф. Использование обменной энергии племенными бычками в зависимости от содержания углеводов в сухом веществе / В.Ф. Радчиков, В.К. Гурин, В.А. Люндышев, Р.Д. Шорец, С.В. Сергучев // Зоотехнічна наука Поділля: історія, проблеми, перспективи: матеріали міжнародної науково-практичної конференції, присвяченої 90-річчю заснування та 55-річчю відродження біотехнологічного факультету Подільського державного аграрнотехнічного університету, 16—18 березня 2010 р. / за ред. професора М.Г. Повознікова / Подільський державний аграрно-технічний університет. Кам'янець-Подільський: Видавець ПП Зволейко Д.Г., 2010. С. 220—222.
- 9. Радчиков, В.Ф. Физиологическое состояние и продуктивность бычков в зависимости от фракционного состава протеина в рационе / В.Ф. Радчиков, Ю.Ю. Ковалевская, В.К. Гурин, В.П. Цай, И.В. Богданович // Научные основы повышения продуктивности сельскохозяйственных животных: сб. науч. тр. / СКНИЖ. Краснодар, 2010. Ч. 1. С. 129–131.
- 10. Радчиков, В.Ф. Влияние скармливания люпина, обработанного разными способами, на продуктивность бычков / В.Ф. Радчиков // Ученые записки УО «ВГАВМ». Витебск, 2010. Т. 46, вып. 1, ч. 2. С. 187–190.