В.М. Капцевич, В.К. Корнеева, И.В. Закревский

Белорусский государственный аграрный технический университет, г. Минск, Республика Беларусь

ИЗГОТОВЛЕНИЕ ФИЛЬТРУЮЩИХ МАТЕРИАЛОВ ИЗ ОТХОДОВ МЕДНОГО КАБЕЛЬНОГО ПРОИЗВОДСТВА

Введение В настоящее время с интенсивным развитием металлургии и машиностроения в Республике Беларусь имеются отходы медного кабеля, из которого УП «Белцветмет» наладил выпуск медной сечки — медных разнотолщинных волокон небольшой длины, которые представляют интерес в качестве исходного сырья для производства пористых волокновых материалов (ПВМ). Известно, что свойства пористых материалов определяются свойствами исходного сырья, а также технологией их изготовления.

Целью настоящей работы является исследование свойств исходных волокон, изготовление экспериментальных образцов ПВМ и исследование их структурных и гидродинамических свойств.

Результаты исследований. К основным свойствам волокон относятся их дисперсность, гранулометрический состав, насыпная плотность, плотность утряски, микротвердость и прессуемость.

Дисперсность волокон можно характеризовать двумя параметрами: диаметром волокон и их длиной [1]. На рисунке 1 приведена фотография исходных волокон в состоянии поставки. Их анализ позволяет прийти к заключению, что размеры волокон характеризуются разбросом диаметров от 0,1 до 2,0 мм и длин от 1,0 до 20 мм.

Рисунок - 1. Внешний вид волокон в состоянии поставки.

Гранулометрический (дисперсионный) состав. Волокна представляют собой линейные элементы, и потому, с точки зрения геометрии, характеризуются двумя параметрами: диаметром и длиной. Для определения гранулометрического состава применялся метод ситового анализа. Использовались сита с размером ячеек 2,2; 1,6; 1,0; 0,63; 0,4; 0,315; 0,2 мм. На рисунке 2 представлена гистограмма распределения волокон по фракциям, а на рисунке 3 приведены их фотографии.

Рисунок - 2. Гистограмма распределения волокон по фракциям

Рисунок - 3. Фотографии волокон различного гранулометрического состава: а — менее 0,2 мм; б — (-0,315...+0,2) мм; в — (-0,4...+0,315) мм; г — (-0,63...+0,4) мм; д — (-1,0...+0,63) мм; е — (-1,6...+1,0) мм; ж — (-2,2...+1,6) мм; з — более 2,2 мм

Основной морфологической характеристикой дисперсной среды является форма ее частиц, которая определяется по принципу сравнения с формой известных макротел.

При рассмотрении исходного сырья были выделены следующие типы форм: пластинчатые гранулы, осколочные гранулы и непосредственно волокна различных длин и диаметров (рисунок 4).

Результаты анализа ситового рассева исходного сырья позволяют прийти к заключению: на сите с размером ячейки 2,2 мм задерживаются в основном пластинчатые гранулы; на сите с размером ячейки 1,6 мм — осколочные гранулы; на сите с размером ячейки 1,0 мм — осколочные гранулы и волокна большого диаметра (1–2 мм); на сите с размером ячейки 0,63 — волокна диаметром более 0,5 мм и длиной более 15 мм; на сите с размером ячейки 0,4 мм — в основном волокна диаметром менее 0,5 мм и длиной 7–15 мм; на ситах с размером ячейки 0,315 и 0,2 мм — большей частью волокна диаметром менее 0,5 мм и длиной до 7 мм.

Насыпную плотность определяли по ГОСТ 19440-94. Результаты по определению насыпной плотности представлены на рисунке 5. Плотность утряски определяли по ГОСТ 25279-92. Результаты исследований отражены на рисунке 6.

Рисунок 5. Зависимость насыпной плотности волокон от гранулометрического состава

Рисунок 6. Зависимость плотности утряски волокон от гранулометрического состава

Микротвердость определяли по ГОСТ 9450-76. Результаты исследования микротвердости неотожженных волокон приведены в таблице 1.

Таблица 1. Зависимость микротвердости неотожженных волокон от фракционного состава

Фракционный состав, мм	(-0,2+0,1)	(-0,315+0,2)	(-0,4+0,315)	(-0,63+0,4)	(-1,0+0,63)	(-1,6+1,0)	(-2,2+1,6)
Микротвердость неотожженных волокон, МПа	935	981	1037	1076	1036	1047	1219

Прессуемость волокон характеризовали их уплотняемостью.

Для определения характеристики уплотняемости определялась зависимость пористости прессовок П из волокон различных фракций от давления прессования Р. Для построения математической зависимости, устанавливающей взаимосвязь между ними, использовали уравнение прессования волокнового тела Ю.Г. Дорофеева [2]:

$$P = K\sigma_{\rm T} (1 - \Pi)^m, \tag{1}$$

где *К* и *m* — постоянные; $\sigma_{\rm T}$ — предел текучести материала волокон.

На рисунке 7 представлены полученные экспериментальные данные.

Рисунок 7. Зависимости пористости брикетов от давления прессования

На основе полученных экспериментальных данных методом наименьших квадратов для прессовок из медных волокон различных фракций определены значения коэффициентов К и m, входящие в уравнение (1) (таблица 2).

Таблица 2. Значение коэффициентов К и *m*, входящих в уравнение прессования медных волокон различных фракций

Фракционный состав, мм	K	т
(-0,2+0,1)	6,22	3,49
(-0,315+0,2)	6,44	3,64
(-0,4+0,315)	7,15	3,78
(-0,63+0,4)	7,08	3,74
(-1,0+0,63)	12,24	4,31
(-1,6+1,0)	11,28	4,02

На основании рассчитанных значений коэффициентов K и m определены значения величин давлений прессования, обеспечивающих получение экспериментальных образцов пористостью П, равной 20, 30, 40, 50 %. Результаты расчетов представлены в таблице 3.

Таблица 3. Значения давлений прессования для получения прессовок из волокон различного фракционного состава требуемой пористости

	Давление прессования Р, МПа					
Фракционный состав, мм	$\Pi = 20\%$	$\Pi = 30\%$	$\Pi = 40\%$	$\Pi = 50\%$		
(-0,2+0,1)	197	123,6	72,2	38,2		
(-0,315+0,2)	197,2	121,3	69,2	35,6		
(-0,4+0,315)	212,2	128,1	71,5	35,9		
(-0,63+0,4)	212,1	128,7	72,3	36,6		
(-1,0+0,63)	322,8	181,6	93,4	42,6		
(-1,6+1,0)	317,4	185,5	99,8	48,0		

Для определения структурных и гидродинамических свойств ПВМ различного фракционного состава в стальной пресс-форме прессовались при различных давлениях экспериментальные образцы в форме дисков диаметром 30 мм и толщиной 5 мм. Образцы спекались в электропечи в атмосфере эндогаза при температуре спекания 1010±10 °C. Время прохождения образцами зоны нагрева печи составляло 1,5 ч.

Структурные и гидродинамические свойства образцов определяли: пористость образцов — расчетным методом по ГОСТ 18898-89, размеры пор — методом вытеснения жидкости по ГОСТ 26849-93, коэффициент проницаемости — по ГОСТ 25283-93. Равномерность порораспределения характеризовали параметром *A*, равным отношению среднего размера пор к максимальному.

В таблице 4 при

ведены установленные структурные (пористость П, максимальные $d_{\pi max}$ и средние $d_{\pi cp}$ размеры пор) и гидродинамические (коэффициент проницаемости k) свойства экспериментальных образцов ПВМ из медных волокон в зависимости от размера волокон d_{B} и давления прессования P, на рисунке 7 представлены зависимости структурных и гидравлических свойств от давления прессования, а на рисунках 8, 9 - взаимосвязь структурных и гидродинамических свойств ПВМ из медных волокон различных фракций.

Таблица 4. Структурные и гидродинамические свойства экспериментальных образцов ПВМ из медных волокон

№п /п	$d_{\scriptscriptstyle \mathrm{B}},$ MM	<i>Р</i> , МПа	П, %	$d_{\pi \max}$,	$d_{\pi cp},$	k,	A
1	(-0.2 + 0.1)	200	20.4	20	11	0.6	0.38
$\frac{1}{2}$	(-0,2+0,1)	125	32.0	43	18	3 2	0,38
$\frac{2}{3}$		75	40.8	43 57	18 24	5,2 7 1	0,42 0.42
1		40	51 1	71	32	15.0	0,42
5		15	62 0	107	40	31.6	0,43
1	(-	200	20.4	43	23	3 2	0,57
2	0.315 + 0.2	120	31.8	86	32	10.1	0,34
$\frac{2}{3}$	0,515+0,2)	70	<i>4</i> 2 2	120	43	23.8	0,37
2 2		35	523	164	43 54	25,0 46.7	0,30
5		15	59 1	210	54 66	80.3	0,35
1	(-	220	19.6	58	37	83	0.64
2	0.4 + 0.315)	130	31.2	107	52	26.1	0.49
$\frac{2}{3}$	0,4+0,515)	70	42.0	147	32 70	63.2	0,49
2 2		35	48.9	206	83	106.2	0,49
- T	<u> </u>	55	40,9	200	05	100,2	0,40
1	(-0,63+0,4)	215	21,2	72	39	9,8	0,54
2		130	32,6	121	56	31,9	0,46
3		75	41,0	164	77	76,4	0,47
4		40	51,3	243	96	147,5	0,40
1	(-1,0+0,63)	325	18,2	93	45	11,6	0,48
2		180	30,6	172	63	38,3	0.37
3		90	41.3	205	83	89,4	0,40
			,			,	,
1	(-1,6+1,0)	325	19,6	115	45	12,4	0,39
2		190	30,1	311	68	43,1	0,22

Рисунок 7. Зависимости пористости П (а), максимальных $d_{n \max}(6)$ и средних $d_{n cp}$ (в) размеров пор, коэффициента проницаемости k (г) от давления прессования ПВМ из медных волокон фракций: $\bullet - (-0,2...+0,1)$, $\blacksquare - (-0,315...+0,2)$, $\blacktriangle - (-0,4...+0,315)$, × - (-0,63...+0,4), ж - (-1,0...+0,63), $\bullet - (-1,6...+1,0)$ мм

Рисунок - 8. Зависимость коэффициента проницаемости k от максимальных $d_{\pi \max}(a)$ и средних

 $d_{п cp}$ (б) размеров пор ПВМ из медных волокон фракций: ◆ — (-0,2...+0,1), ■ — (-0,315...+0,2), ▲ — (-0,4...+0,315), × — (-0,63...+0,4), ж — (-1,0...+0,63), ● — (-1,6...+1,0) мм

Рисунок - 9. Зависимость коэффициента проницаемости *k* от пористости П ПВМ из медных волокон фракций: ◆ — (-0,2...+0,1), ■ — (-0,315...+0,2), — (-0,4...+0,315), × — (-0,63...+0,4), ж — (-1,0...+0,63), ● — (-1,6...+1,0) мм

Методом сухого изостатического прессования из отходов медного кабельного производства изготовлены длинномерные трубчатые фильтрующие элементы и фильтрующие элементы сложной формы (рисунк 10).

Выводы. Анализ зависимостей структурных и гидродинамических свойств ПВМ, полученных из отходов, показывает возможность варьирования пористостью от 20 до 60 %, максимальными размерами пор — от 30 до 310 мкм, средними — от 10 до 100 мкм и коэффициентом проницаемости — от 1 до 150 мкм², что в конечном итоге позволяет создавать фильтрующие материалы с требуемыми эксплуатационными характеристиками.

Литература

1. Буланов, В.Я. Диагностика металлических порошков / В.Я. Буланов [и др]. – М.: Наука, 1983. – 186 с.

2. Косторнов, А.Г. Материаловедение дисперсных и пористых металлов и сплавов. Т.1. Киев: Наукова думка, 2002. – 576 с.