БИОЛОГИЧЕСКИ АКТИВНЫЕ ДОБАВКИ ИЗ САПРОПЕЛЯ В РАЦИОНАХ ТЕЛЯТ

Е.А. ДОБРУК, В.К. ПЕСТИС, Р.Р. САРНАЦКАЯ, А.М. ТАРАС, Л.М. ФРОЛОВА УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь, 230008 Г.В. НАУМОВА

ГНУ «Институт проблем использования природных ресурсов и экологии НАН Республики Беларусь» г. Минск, Республика Беларусь, 220024 Н.С. ЯКОВЧИК

РУСП «Племзавод «Закозельский» Дрогичинский р-н, Брестская обл., Республика Беларусь

(Поступила в редакцию 10.01.2011)

Введение. В настоящее время кроме недостатка в рационах энергии, протеина, сахара и других элементов питания сельскохозяйственных животных остро ощущается дефицит биологически активных веществ. Одним из местных источников минерального и витаминного сырья может быть озерный сапропель, запасы которого в Беларуси, по данным института проблем использования природных ресурсов и экологии Академии наук Беларуси, составляют 3,73 млрд. м³ [12]. Потребность сельскохозяйственных животных в макро- и микроэлементах, витаминах и других биологически активных веществах, обладающих стимулирующим действием, в значительной степени может быть удовлетворена за счет использования сапропелей.

По данным ряда исследователей, сапропели обладают стимулирующим действием на обменные процессы, продуктивность и состояние здоровья животных [2–4]. Их ценность состоит в том, что по своему химическому составу они близки ко многим кормам, которые являются основными поставщиками питательных веществ в рационах сельскохозяйственных животных.

С помощью биологически активных веществ (БАВ) можно добиться максимальной сохранности молодняка, повысить коэффициент усвояемости питательных веществ корма и увеличить их продуктивность, так как она определяется уровнем и направленностью у них процессов обмена веществ и энергии [1,5–8]. Одним из источников биологически активных веществ является озерный сапропель. Это делает возможным и целесообразным его использование в кормлении сельскохозяйственных животных и птицы. Важным биологически активным компонентом сапропелей являются гуминовые кислоты, содержание которых составляет от 7 до 14% от органической массы. Наиболее эффективным является использование препаратов, полученных из сапропеля. Они успешно заменяют синтезированные, превосходя их по эффективности действия и низкой стоимости. Благодаря специфическому химическому строению гуминовые кислоты вступают во взаимодействие с такими биологическими активными веществами, как

холин, парааминобензойная кислота, тиамин, рибофлавин, никотинамид, пантотеновая кислота, активизируют окислительно-восстановительные реакции и перенос кислорода и водорода в ткани [9,10]. Учитывая эффективность и безвредность этих препаратов, представляет значительный интерес изучение возможности их применения в качестве биологически активных добавок к кормам животных.

При интенсивном производстве продукции животноводства важную роль играют биологически активные вещества. В связи с тем, что в Республике Беларусь недостаточно производится для нужд животноводства биологически активных добавок, а завозимые из-за рубежа требуют валютных средств, представляет интерес изучения возможности использования в рационах животных БАВ, полученных из местного сырья, так как они менее дефицитны и их стоимость значительно ниже по сравнению с завозимыми. Большой практический интерес представляет изучение возможности использования в рационах животных биологически активных добавок из сапропеля, торфа и растительного сырья. Данное сырье является экологически чистым, а добавки, полученные на его основе, безвредны при длительном скармливании животным. [11,13].

Цель работы – изучить эффективность использования биологически активных добавок из сапропеля в рационах телят.

Материал и методика исследований. В ИПИПРЭ Национальной академии наук беларуси совместно с УО «Гродненский государственный аграрный университет» были разработаны технологии получения биопрепаратов из сапропеля путем использования метода фракционного разделения. Было получено два препарата, сырьем для получения служил сапропель Ант-озера (карбонатный тип).

Биопрепарат (ГП 1) был получен в результате окисления воднощелочной суспензии сапропеля перекисью водорода в присутствии катализатора — солей кобальта, а биопрепарат (ГП 2) — в результате гидролитической деструкции сапропеля, путем его последовательной тепловой обработки в кислой и щелочной средах.

С целью изучения влияния биопрепаратов, полученных из сапропеля, на обменные процессы, естественную резистентность, сохранность и продуктивность телят был проведен научно-хозяйственный опыт в условиях РУСП «Племзавод «Закозельский» Дрогичинского района согласно схеме, приведенной в табл. 1.

Количество Продолжительность Группы животных, учетного периода, Условия кормления гол. 1-я 10 90 ОР (рацион хозяйства) контрольная 2-я 10 90 OP + 0.2 мл/кг живой массы ГП 1 опытная 3-я 90 10 OP + 0.2 мл/кг живой массы ГП 2 опытная

Таблица 1. Схема опыта

Примечание: ГП – гуминовый препарат.

Для опыта было отобрано 30 телят черно-пестрой породы со средней живой массой 49–55 кг. Животных распределили на 3 группы по 10 гол. в каждой. В состав рациона входили: цельное молоко, ЗЦМ, комбикорм, сено, подвяленная зеленая масса, сенаж.

Опытные телята помимо основного рациона получали по 0,2 мл/кг живой массы испытуемых препаратов ГП 1 и ГП 2. Препараты телятам скармливали с ЗЦМ. В среднем за опыт доза препарата составила 20 мл на 1 гол. в сутки. Заменитель цельного молока готовили перед выпойкой. Для этого сухой заменитель разбавлялся водой в соотношении 1:8,5. Расход восстановленного ЗЦМ составил 6 л на 1 гол. в сутки. Содержание телят групповое, по 4 гол. в клетке.

В научно-хозяйственном опыте учитывали следующие показатели: поедаемость кормов – путем учета заданных кормов и их остатков перед утренней раздачей раз в каждые 10 дней на протяжении опыта; энергию роста телят — на основании индивидуального взвешивания животных утром до кормления один раз в месяц; гематологические показатели крови — путем взятия крови из яремной вены утром, спустя 2—3 часа после кормления, 2 раза, в начале и в конце опыта. Кровь брали у 4 животных из каждой группы. Все биохимические показатели сыворотки крови определяли на биохромотографе РОІNТЕ 180 и спектрометре «Флюрат -02-2 м».

Результаты исследований и их обсуждение. В УО «Гродненский государственный аграрный университет» и Государственном научном учреждении «Институт проблем использования природных ресурсов и экологии Национальной академии наук Беларуси» разработаны технологии получения гуминовых препаратов из сапропеля. Сырьем для получения новых препаратов являлся сапропель Ант-озера Гродненского района. Он относится к карбонатному типу, так как количество органического вещества составляет в нем 40,51%. Данный тип сапропеля отличается невысоким содержанием сырого протеина — 6,92%. Содержание золы в данном сапропеле достаточно высокое — 47,3%. Из минеральных элементов наибольший удельный вес занимает кальций, фосфор, магний, железо, цинк и марганец.

Наработано было по 60 л опытных образцов препаратов. Препарат $\Gamma\Pi$ 1 представляет темно-коричневую жидкость, которая хорошо растворима в воде. Плотность препарата -1,0-1,06 г/см³, реакция среды — щелочная (рН 11,0–12,0). Препаративная форма препарата $\Gamma\Pi$ 2 — жидкость темно-коричневого цвета без посторонних твердых включений, удельный вес -1,05 г/см³, рН среды -10,0-12,0. Разработанные на основе сапропеля биопрепараты не взрывоопасны и неогнеопасны, устойчивы при температуре хранения 5-50°C. Хранить препараты можно в стеклянной, полиэтиленовой и металлической таре с антикоррозионным покрытием.

Результаты исследования состава органической части гуминовых препаратов, полученных из сапропеля Ант-озера, представлены в табл. 2.

Таблица 2. Химический состав органической части гуминовых препаратов, полученных из сапропеля, %

	Co,	Содержится компонентов, %			
Компоненты	ГП	ГП 1		ГП 2	
	в препарате	на ОМП	в препарате	на ОМП	
Органическая масса	4,14	100	3,88	100	
Гуминовые кислоты	2,49	60,2	2,74	70,6	
Фульвокислоты	0,27	6,4	0,12	3,1	
Органические кислоты	0,48	11,6	0,16	4,2	
В т.ч.: монокарбоновые	0,11	2,7	0,04	1,1	
дикарбоновые	0,08	1,8	0,03	0,8	
оксикарбоновые	0,18	4,4	0,06	1,6	
фенолкарбоновые	0,11	2,7	0,03	0,7	
Аминокислоты	0,31	7,6	0,30	7,8	
Пектины	0,1	2,4	0,08	2,1	

Из данных табл. 2 видно, что органическая часть препаратов представлена гуминовыми кислотами (ГК). В расчете на органическое вещество их содержание составляет 60,2–70,6%. Большее количество ГК находится в препарате ГП 2. Разница составляет 2,5 г, или 10,0%. Полученные препараты отличаются по содержанию фульвокислот и органических кислот. В расчете на органическую массу в ГП 1 больше содержится фульвокислот на 1,5 г, а органических кислот – на 3,2 г.

Органическая часть гуминовых препаратов представлена монокарбоновыми, дикарбоновыми, оксикарбоновыми, фенолкарбоновыми кислотами. Содержание в препаратах аминокислот было практически одинаковым и составило 0,30–0,31% ОМ. Количество пектиновых веществ было незначительным и составило 0,08–0,1% ОМ.

Биологическая активность гуминовых препаратов обусловлена присутствием в них двух фракций – высокомолекулярной, включающей модифицированные ГК (60,2–70,6% ОМ), которые обладают ростостимулирующей активностью, и низкомолекулярной, представленной в основном органическими кислотами (4,2–11,6% ОМ) и фульвокислотами (3,1–6,4% ОМ), ответственными за фунгицидную активность. Более активным ростостимулирующим действием обладают ГП 2, так как в них содержится более 70% гуминовых кислот в расчете на органическую массу препарата.

С целью изучения влияния биопрепаратов, полученных из сапропеля Ант-озера на обменные процессы, естественную резистентность, сохранность и продуктивность телят, был проведен научно-хозяйственный опыт. В результате эксперимента было установлено положительное влияние биопрепаратов на энергию роста телят (табл. 3).

Таблица 3. Динамика живой массы и среднесуточные приросты подопытных телят

Показатели	Группы			
Показатели	1-я контрольная	2-я опытная	3-я опытная	
Живая масса, кг:				
в начале опыта	52,6±0,62	52,4±0,65	52,3±0,50	
в конце опыта	124,9±1,02	128,8±0,57	129,2±0,32	
Валовой прирост, кг	72,3±1,16	76,4±1,01	76,9±0,54	
Среднесуточный прирост, г	803±12,9	849±11,2	855±6,0	
% к контролю	100	105,7	106,4	

Из данных табл. З видно, что при постановке на опыт животные всех подопытных групп имели одинаковую живую массу (52,3—52,6 кг). В результате включения гуминовых препаратов в рационы опытных телят интенсивность их роста увеличилась. Живая масса телят 3-й группы, получившей ГП 2, в конце опыта составила 129,2 кг, что на 4,3 кг, или 3,4% выше по сравнению с животными контрольной, а 2-й группы – соответственно на 3,9 кг, или 3,1%. Следует отметить, что валовой прирост был самым высоким у телят 3-й группы и составил 76,9 кг, что на 4,6 кг, или 6,4% выше по сравнению с контролем, во 2-й группе он был выше соответственно на 4,1 кг, или 5,7%. Наибольший среднесуточный прирост был у телят 3-й опытной группы. За период опыта он составил 855 г, что на 6,4% выше, чем в контроле; во 2-й опытной группе он был выше на 46 г, или 5,7%.

На основании вышеизложенного материала можно сделать заключение, что препарат ГП 2 имеет наилучший ростостимулирующий эффект и способствует улучшению обмена веществ и росту животных.

О повышенном обмене веществ в организме животных опытных групп свидетельствуют и показатели крови (табл. 4).

Показатели	Группы			
Показатели	1-я контрольная	2-я опытная	3-я опытная	
Гемоглобин, г/л	98,9±0,85	104,7±0,56	105,2±0,78	
Эритроциты, 1012/л	6,96±0,05	7,35±0,04	$7,42\pm0,03$	
Лейкоциты, 10%л	8,22±0,11	8,08±0,10	8,06±0,07	
Резервная щелочность, мг%	427±4,65	460±4,55	464±3,56	
Кальций, ммоль/л	2,84±0,05	$3,09\pm0,02$	$3,07\pm0,06$	
Фосфор, ммоль/л	1,44±0,03	1,59±0,02	1,58±0,03	
Общий белок, г/л	74,8±0,92	78,5±0,89	78,9±0,55	
Альбумины, г/л	29,2±0,39	32,6±0,50	32,9±0,30	
Глобулины, г/л	45,6±0,55	45,9±0,45	46,0±0,34	
В т.ч.: альфа	13,5±0,12	12,4±0,10	12,1±0,11	
бета	11,2±0,17	10,8±0,17	10,6±0,19	
гамма	20.9±0.33	22,7±0,29	23.3±0.27	

Таблица 4. Морфологические и биохимические показатели крови телят

Из данных табл. 4 видно, что в конце эксперимента у телят опытных групп увеличилась концентрация гемоглобина на 5,9–6,4%, эритроцитов – на 5,6–6,6%, щелочного резерва – на 7,7–8,7%, кальция – на 8,1–8,8%, фосфора – на 9,7–10,4%. Следует отметить тот факт, что в конце опыта у телят, получавших гуминовые препараты из сапропеля, содержание белка было выше на 4,9–5,5% по сравнению с контролем. Также произошло и перераспределение белковых фракций. У телят опытных групп увеличилось содержание гамма-глобулинов на 8,6–11,5%.

В начале научно-хозяйственного опыта естественная резистентность аналогов всех групп была примерно одинаковой (БАСК – 53,16–53,22 %, ЛАСК – 6,38–6,64 %). К концу опыта возросла бактерицидная активность на 5,32–5,46 %, лизоцимная активность – на 0,78–0,8 %. Повышение естественной резистентности у телят опытных групп способствовало снижению их заболеваемости на 20%. Результаты иссле-

дований о влиянии гуминовых препаратов на естественную резистентность телят приведены в табл. 5.

Группы Показатели. % 2-я опытная 1-я контрольная 3-я опытная Начало опыта 53.18±0.22 $53,22\pm0,22$ 53.16±0.19 БАСК ЛАСК 6.38 ± 0.17 6.50±0.14 6.64 ± 0.18 Конец опыта 62.62±0.35 62,48±0,40 БАСК 57.16±0.23 ЛАСК 7.18 ± 0.18 7.98 ± 0.14 7.96 ± 0.11

Таблица 5. Показатели естественной резистентности телят

Более высокие приросты живой массы животных опытных групп позволили снизить затраты кормовых единиц и переваримого протеина на единицу продукции. В опытных группах затраты корма на 1 кг прироста составили 3,97 – 3,95 к. ед., что на 5,3 – 5,7% ниже, чем в контроле. Телята опытных групп на 1 кг прироста затрачивали 492—489 г переваримого протеина, что ниже по сравнению с контрольной группой на 5,3–5,8 %.

Таким образом, использование биологически активных препаратов, полученных из сапропеля Ант-озера, в рационах телят-молочников выявило их положительное влияние на жизнедеятельность и продуктивность животных.

Заключение. Проведенные исследования показали, что биологически активные добавки (БАД), полученные из сапропеля, оказывают положительное влияние на энергию роста телят. Среднесуточные приросты были выше на 5,7–6,4% у телят, получавших гуминовые препараты. Включение в состав рациона телят БАД в дозе 0,2 мл/кг живой массы активизируют обменные процессы в организме телят, о чем свидетельствуют морфобиохимические показатели крови. В конце эксперимента отмечена тенденция к повышению гемоглобина, эритроцитов, общего белка, щелочного резерва, кальция и фосфора. Содержание их находилось в пределах физиологической нормы.

Применение в кормлении телят биологически активных добавок благоприятно влияет на показатели их естественной резистентности. К концу эксперимента возросла бактерицидная активность на 5,32–5,46 %, лизоцимная — на 0,78–0,80 %. Среди телят, которые получали с ЗЦМ биологически активные добавки из сапропеля, не отмечено случаев их заболеваний.

Введение малых доз этих препаратов (0,2 мл/кг живой массы) улучшает обменные процессы, повышает продуктивность, резистентность, способствует снижению затрат кормов на единицу продукции.

ЛИТЕРАТУРА

^{1.} Андрушкевич, Е.В. Влияние оксидата торфа на показатели естественной резистентности, рост и сохранность пороят-отъемышей / Е.В. Андрушкевич, В.П. Колесень, С.Ю. Черняк // Матер. VIII Междунар. науч.-практ. конф. Минск, 2001. С. 244–247

- 2. Использование ростостимулирующих препаратов из сапропеля и торфа в рационах молодняка свиней / Е.А. Добрук [и др.] // Сельское хозяйство проблемы и перспективы: сб. науч. тр. УО «ГГАУ». Гродно, 2004. Т. 3. Ч.4. С. 17–20.
- 3. Влияние сапропелевого препарата гитин на рост и естественную резистентность телят / Е.А. Добрук [и др.] // Сельское хозяйство проблемы и перспективы: сб. науч. тр. УО «ГГАУ». Гродно, 2004. Т. 3, Ч. 4. С. 21–24.
- 4. Добрук, Е.А. Использование ростостимулирующих препаратов из сапропеля в рационах поросят-отъемышей / Е.А. Добрук, В.К. Пестис, Р.Р. Сарнацкая // Аграрний вісник Причорномор'я. 2005. Вып. 31. С. 111–112.
- 5. Влияние биологически активной добавки «Гумелан 1» на репродуктивные показатели коров/ В.Н. Заяц [и др.] // Зоотехническая наука Беларуси: сб. науч. тр. Жодино, 2008. Т.43. Ч.2. С. 59–64.
- 6. Использование добавок на основе гуминовых веществ в кормлении сухостойных коров /А.В. Кветковская [и др.] // Зоотехническая наука Беларуси: сб. науч. тр. Жодино, 2008. Т.43. Ч. 2. С.99–110.
- 7. Колесень, В.П. Оксидат торфа в рационах кормления молодняка свиней на откорме / В.П. Колесень, С.Ю. Черняк // Сельское хозяйство проблемы и перспективы: сб. науч. тр. УО «ГГАУ». Гродно, 2003. Т. 1. Ч. 2. С. 52–55.
- 8. Влияние биологически активных препаратов из торфа на синтез белка и нуклеиновых кислот животных /Е.Ф. Конопля [и др.] // Весці АН Беларусі. Сер. біял. навук. 1995. №4. С. 10–13.
- 9. Изменение биологической активности гуминовых кислот при их окислительногидролитической деструкции / Γ .В. Наумова [и др.] // Природоиспользование. 2001. Вып. 7. С. 123–125.
- 10. Наумова, Г.В. Биологически активные вещества торфа и продукты его переработки / Г.В. Наумова // Природоиспользование. 2002. Вып. 8. С. 144–152.
- 11. Панова, В.А. Эффективность скармливания биологически активного препарата оксида торфа молодняку крупного рогатого скота / В.А. Панова, В.Ф. Радчиков, Н.В. Лосев // Зоотехническая наука Беларуси: сб. науч.тр. Минск, 2002. Т. 37. С.173–175.
- 12. Пестис, В.К. Сапропели в кормлении сельскохозяйственных животных: монография / В.К. Пестис. Гродно, 2003. 337с.
- 13. Степченко, Л.М. Участие гуминовых препаратов из торфа в управлении обменными процессами у цыплят бройлерного типа /Л.М. Степченко //Торф в решении проблем энергетики, сельского хозяйства и экологии: матер. междунар. конф. Минск, 2006. С.143–146.

УДК 636.2.085

ПРОДУКТИВНОСТЬ КРУПНОГО РОГАТОГО СКОТА ПРИ ИСПОЛЬЗОВАНИИ СИЛОСА С КОНСЕРВАНТОМ-ОБОГАТИТЕЛЕМ

П.В. ПЕСТИС

УО «Гродненский государственный аграрный университет» Г. Гродно, Республика Беларусь, 230008

(Поступила в редакцию 10.01.2011)

Введение. Одним из главных условий увеличения производства продуктов животноводства, повышения продуктивности животных, совершенствования пород и повышения их генетического потенциала является рост производства высококачественных кормов и на основе этого – организация полноценного сбалансированного кормления животных.

В структуре затрат при производстве молока и говядины стоимость кормов занимает более 60%. Поэтому чем дешевле будут корма и чем