ИСТОЧНИКИ И ПРИЕМНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ДЛЯ ИССЛЕДОВАНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

УДК 535.37:539.19:541.14

Взаимодействие циклотетрапиррольных соединений с мощным лазерным излучением в растворах и твердотельных матрицах

Р.Т. Кузнецова¹, Е.Г. Ермолина¹, Е.Н. Тельминов¹, Г.В. Майер¹, С.М. Арабей², Т.А. Павич³, К.Н. Соловьев³, И.П. Калашникова⁴, П.А. Стужин⁵*

> ¹Томский государственный университет 634050, г. Томск, пр. Ленина, 36, Россия ²Белорусский государственный аграрный технический университет 220023, г. Минск, пр. Независимости, 99/1, Беларусь ³Институт физики им. Б.И. Степанова НАН Беларуси 220072, г. Минск, пр. Независимости, 70, Беларусь ⁴Институт физиологически активных веществ РАН 142432, г. Черноголовка, Сев. пр., 1, Россия ⁵Ивановский химико-технологический университет 153000, г. Иваново, пр. Энгельса, 7, Россия

> > Поступила в редакцию 24.09.2009 г.

На основе изучения спектрально-люминесцентных, протоноакцепторных, фотохимических и нелинейнооптических характеристик циклотетрапиррольных соединений в растворах и твердотельных средах обсуждаются особенности их взаимодействия с мощным лазерным излучением в растворах и пористых ксерогелях, окрашенных циклотетрапирролами. Указывается на возможность проявления конкретных физико-химических свойств в зависимости от структуры взаимодействующих пар и интенсивностей падающего излучения.

Ключевые слова: циклотетрапиррольные соединения, оптическое ограничение, мощное лазерное излучение, фотопревращения, пористые силикатные ксерогели; cyclotetrspyrrole compounds, optical limitation, power laser radiation, phototransformations, porous silica xerogels.

Введение

Целенаправленное использование органических молекул и их металлокомплексов в современных технологиях при создании различного рода оптических устройств: сенсоров, нелинейных переключателей и ограничителей мощного импульсного излучения, электролюминесцентных слоев и солнечных концентраторов [1] — требует изучения связи оптических характеристик со структурой молекул, строением сольватных оболочек и твердотельных матриц, в которые внедряются эти молекулы. В последние годы существенно возрос интерес к твердотельным полимерным средам, окрашенным органическими красителями, которые можно использовать в качестве активных сред для перестраиваемых лазеров [1—3], тонкопленочных излучающих и зарядотранспортных слоев для электролюминесцентных устройств и оптических сенсоров [4, 5]. В связи с этим нами изучалось влияние структуры тетрапиррольных соединений и среды, в которую помещены молекулы, на их оптические характеристики.

Объекты и методы исследования

На рис. 1 представлены структурные формулы изученных металлокомплексов тетрапирролов: монои дифталоцианинов, как незамещенных, так и содержащих заместители в фенильных циклах, 1,2нафталоцианина и октафенилпорфиразина. Чистота веществ и структура соединений контролировались с помощью тонкослойной хроматографии, массспектрометрии (MALDI TOF), рентгеноструктурного анализа, спектроскопии протонного магнитного резонанса [6, 7].

Взаимодействие циклотетрапиррольных соединений с мощным лазерным излучением...

^{*} Римма Тимофеевна Кузнецова (kuznetrt@phys.tsu.ru); Елена Геннадьевна Ермолина (kuznetrt@phys.tsu.ru); Евгений Николаевич Тельминов (telminov@elephot.tsu.ru); Георгий Владимирович Майер (science@mail.ru); Сергей Михайлович Арабей (arabei@imaph.bas-net.by); Татьяна Александровна Павич (pavich@imaph.bas-net.by); Константин Николаевич Соловьев (solovyov@imaph.bas-net.by); Ирина Петровна Калашникова (ikalashn@ipac.ac.ru); Павел Анатольевич Стужин (stuzhin@isuct.ru).

Рис. 1. Структурные формулы и обозначения изученных соединений: $1(a) - M=Gd: GdPc_2, 1(b) - M=Dy: DyPc_2, 1(a) - M=Lu: LuPc_2; 2(a) - M=Sm: SmPc'_2, 2(b) - M=Er: ErPc'_2, 2(a) - M=Dy: DyPc'_2, 2(a) - M=Lu: LuPc'_2; 3 - Cu(C_4H_9)Pc; 4(a) - M=Al, X=Cl: ClAlPc; 4(b) - M=In, X=Cl: ClInPc; 4(c) - M=Pd, X=0: PdPc; 5 - MgNc; 6 - M=In, X=Ph: PhInOPTAP$

В качестве растворителей использовали этанол, хлороформ (CHCl₃), диметилсульфоксид (ДМСО), все марки химически чистые; для отнесения разных форм молекул и определения эффективности образования ионных форм по методикам, приведенным в [8], использовали добавки соляной кислоты (HCl) и диметиламина (ДМА). Красители вводились в силикатные матрицы на основе тетраэтоксисилана (ТЭОС) после гидролиза, т.е. на стадии поликонденсации с последующей сушкой образцов в течение 2–3 нед [9].

Спектры поглощения и люминесценции измерялись с помощью спектрометра СМ-2203 («СОЛАР», Беларусь). Нелинейно-оптические (коэффициент ограничения КО = T_0/T_W , где T – пропускание линейное и нелинейное соответственно; W – плотность мощности) и фотохимические свойства (квантовый выход фотопревращений) исследовались при возбуждении лазерами: XeCl ($\lambda_{\text{ген}} = 308$ нм, $\tau_{\text{имп}} = 20$ нс, $E_{\text{имп}} = 50$ мДж) и 2-й гармоники Nd:YAG-лазера ($\lambda_{\text{ген}} = 532$ нм, $\tau_{\text{имп}} = 15$ нс, $E_{\text{имп}} = 30$ мДж) по методикам, описанным в [8, 10], при этом W изменялась в пределах 1–280 MBT/см².

Результаты и обсуждение

Исследование спектроскопических характеристик металлокомплексов моно- и дифталоцианинов с одинаковым тетрапиррольным лигандом:

(AcODy(OCH₂C₆H₁₁)₈Pc (
$$\lambda_{\text{погл}} = 685$$
 HM)
H Dv[(OCH₂C₆H₁₁)₈Pc]₂ ($\lambda_{\text{погл}} = 678$ HM),

где Pc — незамещенный фталоцианин), показало, что при образовании дифталоцианиновой структуры *Q*полоса смещается в коротковолновую область, что согласуется с данными [7], причем смещение тем больше, чем меньше ионный радиус комплексообразующего металла, как показано на рис. 2 для комплексов незамещенного дифталоцианина с Gd, Dy и Lu.

Это свидетельствует об увеличении взаимодействия лигандов при сближении, что вызывает смещение S₁-состояния и согласуется с коротковолновым сдвигом *Q*-полосы в полярном растворителе (например, для DyPc₂ - 662 и 668 нм в этаноле и хлороформе соответственно), что характерно для «неправильных» циклотетрапирролов, где проявляется взаимодействие f- и π -электронов [15]. При одном и том же металле-комплексообразователе плоскости незамещенных лигандов (Рс) располагаются ближе друг к другу по сравнению с менее плоскими замещенными (Рс'), поэтому Q-полоса замещенного дифталоцианина в этаноле дополнительно смещается в длинноволновую область по сравнению с незамещенным (для LuPc₂ и LuPc₂ в этаноле $\lambda_{\text{погл}}^{\text{max}} = 661$ и 674 нм соответственно).

Для незамещенного дифталоцианина с Lu изучены свойства «синей» и «зеленой» форм, структура которых дискутируется [11–14]: при этом «синей»

Рис. 2. Спектры поглощения в хлороформе дифталоцианинов: гадолиния (GdPc₂) – 1; диспрозия (DyPc₂) – 2; лютеция (LuPc₂) – 3

называют структуру, соответствующую анионной форме комплекса, О-полоса которой расщепляется на две компоненты. Анионная форма, называемая также восстановленной, имеет более коротковолновую *Q*-полосу (главную компоненту расщепления) по сравнению с нейтральной формой [12, 13]. Известны также комплексы лантаноидов, имеющие «трехпалубную» структуру «синей» формы [7, 14]. «Зеленой» называют нейтральную форму (стабильный радикал), образованную в результате отрыва электрона от аниона [11, 14]. Кроме того, в работах [12, 13] приведены спектры «окисленной» формы с максимумами в области 710 нм, которые в наших исследованиях совпадают со спектрами, полученными в результате протонирования по мезоазотам нейтральной формы в подкисленных растворах (рис. 3), а восстановленную форму можно получить, добавляя в раствор нейтральной формы электронодонорный растворитель ДМА.

Рис. 3. Спектры поглощения LuPc₂ в этаноле – 1; с добавкой HCl: 0,005% – 2; 0,05% – 3; 0,1% – 4

«Зеленая» форма стабилизируется в хлороформе ($\lambda_{\text{погл}}^{\text{max}} \cong 670-680$ нм), в то время как в апротонном

электронодонорном ДМСО стабилизируется восстановленная форма ($\lambda_{\text{погл}}^{\text{max}} \cong 620$ и 700 нм), хотя присутствуют также максимумы, соответствующие нейтральной и окисленной (≅ 710 нм) формам (рис. 4).

Возможно, что стабилизация «синей» и «зеленой» форм для незамещенного дифталоцианина с Lu также обусловлена различным расстоянием между лигандами, которое может варьироваться взаимодействием с растворителем.

Зарегистрирована слабая флуоресценция (700— 790 нм) некоторых дифталоцианинов в «зеленой» форме, при этом анионная (восстановленная) форма дифталоцианина не флуоресцирует, что подтверждается сравнением спектров поглощения и возбуждения флуоресценции (рис. 5).

При регистрации в разных областях полосы флуоресценции (700, 755, 790 нм) в спектре возбуждения отсутствует полоса на 625 нм, соответствующая поглощению анионной формы в ДМСО (кривая 1), а проявляется только полоса нейтральной формы с максимумом на 670 нм (кривые 2-4). Это связано с тем, что в результате расщепления уровней аниона возникает запрещенное нижележащее состояние, усиливающее безызлучательные процессы. Доказательство принадлежности этой флуоресценции дифталоцианинам требует дополнительных исследований.

На рис. З приведены типичные изменения спектров поглощения дифталоцианинов при подкислении раствора: уменьшается интенсивность поглощения нейтральной формы и увеличивается — катионрадикальной в более длинноволновой области. На основании таких изменений строятся кривые титрования и определяются значения констант основности в основном $pK_a(S_0)$ и возбужденном $pK_a(S_1)$ электронных состояниях, приведенные в табл. 1 и характеризующие протоноакцепторную способность нейтральных радикалов.

На рис. 4 показаны спектральные изменения, зарегистрированные как результат фотопревращений. Для растворов в хлороформе наблюдаются уменьшение интенсивности нейтральной формы и рост

Взаимодействие циклотетрапиррольных соединений с мощным лазерным излучением... 10. Оптика атмосферы и океана, № 1.

Рис. 4. Спектры поглощения LuPc₂ в ДМСО: до облучения — 1, после облучения XeCl-лазером — 2; в хлороформе: до облучения — 3, после облучения XeCl-лазером — 4; в этаноле + 0,2% HCl без облучения — 5; 1, 2 — правая шкала, 3—5 — левая шкала

Рис. 5. Спектры поглощения (1) и возбуждения флуоресценции растворов DyPc₂ в ДМСО (2–4), λ_{per} = 700 (2), 755 (3) и 790 нм (4). Стрелками показаны шкалы для соответствующих кривых

поглощения в области, соответствующей поглощению катион-радикальной формы. В протоноакцепторном ДМСО, где преобладает восстановленная (анионная) форма с максимумом на 620 нм, ее концентрация уменьшается и увеличивается поглощение в области, соответствующей поглощению нейтральной формы, т.е. в ДМСО фотопревращения восстановленной формы обусловлены отрывом электрона и образованием нейтрального радикала.

В хлороформе преобладает фотоперенос протона из растворителя на мезоазот с образованием катион-радикала, а следы HCl, подкисляющие раствор

Кузнецова Р.Т., Ермолина Е.Г., Тельминов Е.Н. и др.

Таблица 1

	-	•	•	-				
Раствор	$pK_a(S_0)$	$pK_a(S_1)$	ΚΟ φ _{φοτ}			KO	Ффот	
				$\lambda_{\rm obs} = 3$	08 нм	λ _{обл} = 532 нм		
			W = 1	50 МВт/см ²	$W = 5 \text{ MBt/см}^2$	<i>W</i> = 1	50 МВт/см ²	$W = 5 \text{ MBt/см}^2$
LuPc ₂ (зеленая)								
CHCl ₃	0,6	2,8	1,9	$4,5 \cdot 10^{-4}$	$4, 4 \cdot 10^{-3}$	5,5	$2,5 \cdot 10^{-3}$	$5 \cdot 10^{-3}$
LuPc ₂ (синяя) CHCl ₃			1,8	$3,7 \cdot 10^{-4}$	$3.1 \cdot 10^{-3}$	9,5	$6\cdot 10^{-4}$	$7\cdot 10^{-5}$
LuPc2 (зеленая) ДМСО			1,2	$3,1\cdot 10^{-4}$	$6,4\cdot 10^{-4}$	2,3	$8,4\cdot 10^{-4}$	$4\cdot 10^{-5}$
LuPc2 (синяя) ДМСО			1,4	$3,7\cdot 10^{-5}$	$5\cdot 10^{-4}$	1,7	$3,2\cdot 10^{-4}$	$< 7 \cdot 10^{-6}$
DyPc ₂ CHCl ₃	1,7	3,7	4,1	$1,2\cdot 10^{-4}$	$5,8 \cdot 10^{-3}$	5,1	$5,2\cdot 10^{-4}$	$1\cdot 10^{-4}$
DyPc2 ДМСО			2,6	$4\cdot 10^{-4}$	$9,4\cdot 10^{-4}$	1,8	$1,2\cdot 10^{-4}$	$1,5\cdot 10^{-4}$
GdPc ₂ CHCl ₃			6,6	$6,8\cdot 10^{-4}$	$4\cdot 10^{-3}$	3,1	$1,8\cdot 10^{-3}$	$3,9\cdot 10^{-4}$
GdPc ₂ ДМСО			2,5	$5,5 \cdot 10^{-4}$	$4\cdot 10^{-4}$	—	—	_
SmPc ₂ CHCl ₃	3,1	4,4	1,9		$1,5\cdot 10^{-3}$	3,6		$5\cdot 10^{-4}$
DyPc ₂ CHCl ₃	3	4,7	_		_	1,3		$2,5\cdot 10^{-4}$
ErPc ₂ CHCl ₃	2,4	3,8	_		_	2,8		$7,1 \cdot 10^{-5}$
LuPc ₂ CHCl ₃	3	4,6	_		_	2,7		$3,4\cdot 10^{-4}$

Эффективности образования катиона в основном $pK_a(S_0)$ и возбужденном $pK_a(S_1)$ состояниях, коэффициенты ограничения и квантовые выходы фотопревращений ($\phi_{\phi_0 \tau}$) при облучении излучением с разными длинами волн и интенсивностями

в процессе облучения, образуются в хлороформе на воздухе согласно реакции

$$2CHCl_3 + O_2 + h\nu \rightarrow 2HCl + 2COCl_2.$$
(1)

Следует отметить, что сдвигом ион-нейтрального равновесия за счет добавления малых количеств ДМА в облученные растворы можно частично восстановить первоначальные спектральные характеристики раствора, существующие до облучения, и продлить срок его действия.

На рис. 6 приведены типичные кривые ограничения лазерного излучения T(W), из которых видно,

Рис. 6. Зависимость пропускания T лазерного излучения ($\lambda = 532$ нм) от его плотности мощности растворами: LuPc₂ в CHCl₃: синяя форма – 1; зеленая – 2; в ДМСО: синяя – 4, зеленая – 3; DyPc₂ в CHCl₃ – 5, в ДМСО – 6; LuPc₂' в CHCl₃ – 7; DyPc₂' в CHCl₃ – 8

что растворы дифталоцианинов в хлороформе уменьшают пропускание мощного излучения эффективнее, чем растворы в ДМСО, что указывает на триплеттриплетный характер ограничения. В этом случае тяжелый атом увеличивает выход образования триплетов, концентрация которых насыщается с ростом интенсивности, при этом получена форма кривой с насыщением. В ДМСО присутствует несколько форм (см. рис. 4, кривые 1, 2), поэтому форма кривой ограничения не показывает насыщения, что свидетельствует о вкладе разных механизмов. Такого же типа кривые получены нами ранее при изучении слабоподкисленных и нейтральных растворов некоторых циклотетрапирролов, также содержащих несколько форм молекул [8].

В табл. 1 приведены эффективности протонирования (*pK*_a), коэффициенты ограничения (КО) и квантовые выходы фотопревращений (ϕ_{dor}) для изученных комплексов. Анализ табл. 1 показывает, что константы основности (*pK_a*) нейтральных радикалов дифталоцианиновых комплексов увеличиваются при электронодонорном замещении лигандов и при возбуждении, причем при возбуждении основность возрастает более существенно для незамещенных лигандов. Оптическое ограничение (ОО) для растворов в хлороформе выше, чем в ДМСО, и для незамещенных выше, чем для замещенных. Учитывая различие в форме кривых ограничения и более эффективное ограничение мощного излучения растворами незамещенных дифталоцианинов по сравнению с замещенными, мы полагаем, что наряду с триплетным перепоглощением мощного излучения существенный вклад в механизм ограничения дает изменение выхода образования различных молекулярных форм дифталоцианинов при возбуждении. За увеличение ОО для незамещенных лигандов ответственно более резкое увеличение основности при возбуждении, что в условиях насыщенного поглощения приводит к большей концентрации катион-радикальных форм, участвующих в перепоглощении мощного излучения.

Фотопревращения циклотетрапирролов в хлороформе в условиях, близких к линейному поглощению возбуждающего излучения (5 MBт/см²), при УФ-возбуждении выше на 1-2 порядка по сравнению с видимым облучением (см. табл. 1), что связано с однофотонным частичным поглощением хлороформом УФ-излучения, в результате которого кислородсодержащий хлороформ испытывает фотопревращения с образованием фосгена и HCl по схеме (1). При возбуждении видимым светом хлороформ заметно возбуждается только за счет двухфотонного поглощения, поэтому выход фотопревращений в хлороформе увеличивается при повышении интенсивности возбуждения на 532 нм. В случае УФ-возбуждения, наоборот, выход фотопревращений уменьшается при повышении интенсивности света, так как концентрация молекул в фотореактивном состоянии уменьшается за счет их ухода из этого состояния по каналу ступенчатых перепоглощений, как следует из результатов по ОО. Фотостабильность изученных дифталоцианинов в целом несколько выше, чем монофталоцианиновых комплексов [8].

В современных технологиях для практического использования применяются твердые образцы, поэтому наряду с растворами циклотетрапирролов изучены возможности введения этих соединений в твердые матрицы и свойства таких образцов. В табл. 2 приведены спектральные и ограничительные характеристики одних и тех же соединений в хлороформе и полимерной силикатной матрице на основе ТЭОС. Видно, что «синяя» и «зеленая» формы комплексов незамещенного дифталоцианина с Lu по спектральным характеристикам в ТЭОС-матрице приближаются друг к другу, в то время как в растворе различия более выражены. Кроме того, в отличие от растворов полосы LuPc₂ уширены, т.е. в матрице существует несколько форм таких молекул, в том числе ассоциированных. По-видимому, взаимодействие дифталоцианина с многофункциональной поверхностью пор силикатной матрицы может стабилизировать несколько форм, одна из которых, например нейтральная, наиболее вероятна для LuPc₂.

Для PdPc и PhInOPTAP в твердой матрице наряду с нейтральной формой комплексов появляется поглощение ионных форм в результате специфического взаимодействия тетрапирролов с силанольными =Si-OH-группами полимерных молекул в порах матрицы. Для других соединений, имеющих меньшую основность (MgNc, ClInPc, Cu(C_4H_9)₄Pc и т.п.), присутствуют в большей мере, по-видимому, ассоциаты (уширение полос в коротковолновую сторону), т.е. в матрице осуществляется многоцентровое поглощение. Флуоресценция в твердых матрицах также многоцентровая, причем соотношение максимумов существенно зависит от длины волны возбуждения. Коэффициенты ограничения, характеризующие ОО, показывают, что соединения в твердых матрицах ограничивают мощное излучение, как правило, слабее, чем в растворах, за исключением PdPc и PhInOPTAP. Причины этого эффекта связаны в первую очередь с отсутствием эффекта внешнего тяжелого атома в ТЭОС-матрице по сравнению с растворами, а также со свойствами образованных

	1 1		1				
		Раствор в	CHCl ₃	ТЭОС-матрица			
Соединение	$λ_{\text{погл}}^Q$, нм	λ _{фл} , нм (λ _{возб,} нм)	КО ₅₃₂ (<i>W</i> , МВт∕см²)	$\lambda_{\text{погл}}^Q$, нм	λ _{фл} , нм (λ _{возб,} нм)	КО ₅₃₂ (<i>W</i> , МВт∕см ²)	
	684	693(620)	8,5(150)	649	698(610)	2(200)	
MgNc		764(620)		714	764(610)		
				781			
Cu(C ₄ H ₀)/Pc	680	706(620)	4,2(150)	640	676(610)	2(200)	
				695			
	699(н)	708(625)	1,9(150)	686	720(620)	5(150)	
PdPc	715(и)*	740(625)		712	740(620)		
					770(620)		
	697	710(625)	3,7(150)	618	696(610)	1,7(100)	
ClInPc		776(625)		690			
				840			
LuDo	678	700(600)	9,5(150)	680	682(610)	3,8(200)	
$Lurc_2$		740(600)			731(610)		
(синяя форма)		780(600)			762(610)		
LuDa	667	701(600)	5,5(150)	684	693(625)	2,7(200)	
Lurc ₂		737(600)			719(625)		
(зеленая форма)		779(600)			770(625)		
	495		4,8(150)	490	705(590)	2,4 (125)	
$SmPc'_2$	681			615			
				676			
	648(н)	664(625)	1,8(100)	648	685(606)	3,5(100)	
FIIIIOFIAF	676(и)*			670	745(606)		

Таблица 2 Спектрально-люминесцентные и ограничительные характеристики тетрапиррольных соединений в растворах и силикатных ксерогелях на основе ТЭОС

Кузнецова Р.Т., Ермолина Е.Г., Тельминов Е.Н. и др.

^{*} В подкисленных растворах.

ассоциатов, которые ограничивают мощное излучение меньше, чем мономеры [9]. Кроме того, в твердых образцах наблюдается высокое линейное пропускание (*T*₀ > 80%) введенных красителей — в матрицу трудно ввести высокие концентрации тетрапирролов вследствие их низкой растворимости в подходящих для синтеза растворителях (в растворах $T_0 = 50 \div 70\%$), т.е. концентрация молекул, для которых наблюдается нелинейное поглощение, в матрицах меньше, чем в растворах. Увеличение КО для матриц с PdPc и PhInOPTAP по сравнению с растворами связано со свойствами ионных форм этих молекул, которые преобладают в твердотельной матрице в результате взаимодействия с силанольными центрами нанопор. Это согласуется с результатами, полученными в [2, 3, 9] для органических молекул других классов, и, как показано в [8], ограничение мощного излучения ионными формами некоторых тетрапирролов по сравнению с нейтральными увеличивается.

Заключение

Приведенные результаты показали, что эффективность образования катион-радикальных форм в комплексах производных дифталоцианинов увеличивается при введении электронодонорных заместителей в фенильные циклы, а также при переходе в возбужденное состояние.

Все изученные растворы и твердотельные образцы, содержащие циклотетрапиррольные соединения, уменьшают в разной степени пропускание мощных импульсов наносекундной длительности по сравнению с линейным, что обусловлено поглощением триплетно-возбужденных молекул, а также фотокатионов и различных форм, образующихся за счет сдвига ион-нейтрального равновесия при возбуждении.

Уменьшение эффективности ОО в твердых матрицах на основе ТЭОС по сравнению с растворами (для MgNc, SmPc₂' и т.д.) связано с существованием в порах матриц ассоциированных форм. Увеличение эффективности ОО в твердых матрицах по сравнению с эффективность ОО в растворах (для PdPc, PhInOPTAP) обусловлено более эффективными ограничительными характеристиками ионных форм, преобладающих для этих соединений в ТЭОСматрице при взаимодействии с силанольными центрами на поверхности нанопор.

Фотопревращение дифталоцианинов в хлороформе осуществляется через образование катионрадикальной формы в результате протонирования мезоазота, а в ДМСО – через отрыв электрона и образование из анионной формы нейтрального радикала. С увеличением интенсивности под действием видимого излучения фотопревращения изученных соединений ускоряются, а под действием УФ замедляются, что связано с фотопревращениями растворителя и изменением концентрации молекул в фотореактивном состоянии в результате нелинейного поглощения.

Авторы выражают благодарность Ю.Г. Горбуновой за консультации при обсуждении результатов. Работа выполнена при поддержке РФФИ (грант № 08-02-90003-Бел_а) и БРФФИ (грант № Ф08Р-048), а также ФЦП «Научные и научно-педагогические кадры инновационной России» в 2009—2013 г.: мероприятия 1.1, № 02.740.11.0444, 1.2.1. № 1128 и 1.2.2. № П565.

- Holzer W., Penzkofer A., Pertch T., Danz H., Brauch A., Kley E., Tillmann H., Bader C., Hornhold H.H. Corrugated neat thin-film conjugated polymer distributedfeedbach lasers // Appl. Phys. B. 2002. V. 74. P. 339– 348.
- 2. Способ изготовления лазерного твердотельного элемента (варианты). Патент РФ № 2321928, МКИ7 Н018 3/16. Кузнецова Р.Т., Манекина Ю.А., Майер Г.В., Светличный В.А., Тельминов Е.Н., Арабей С.М., Павич Т.А. Томский госуниверситет РФ, ИФ НАНБ Беларусь. № 2006118482/28. Заявл. 29.05.2006; опубл. БИПМ. 2008. № 10. С. 1045-1046.
- 3. Кузнецова Р.Т., Майер Г.В., Манекина Ю.А., Тельминов Е.Н., Арабей С.М., Павич Т.А., Соловьев К.Н. Спектрально-люминесцентные и генерационные характеристики производных пиридилоксазола в неорганических и гибридных гель-материалах // Оптика и спектроскопия. 2008. Т. 104. № 2. С. 223–229.
- Evans R., Douglas P., Winscom Ch. Coordination complexes exhibiting room-temperature phosphorescence. Evaluation of their suitability as triplet emitters in organic light emitting diodes // Coord. Chem. Rev. 2006. V. 250. N 15–16. P. 2093–2116.
- Zhang Ch., Suslick K.S. A colorimetric sensors array for organics in water // J. Amer. Chem. Soc. 2005. V. 127. N 33. P. 11548–11549.
- 6. *Мальчугина* О.В., *Стужин* П.А. Синтез и исследование металлоорганических комплексов индия (III) с октафенилтетраазапорфиринами // Изв. РАН. Сер. Хим. 2002. № 12. С. 2101–2105.
- Калашникова И.П., Нефедов С.Е., Томилова Л.Г., Зефиров Н.С. Синтез и спектральные характеристики циклогексилметоксизамещенных фталоцианинов редкоземельных элементов // Изв. АН. Сер. Хим. 2007. № 12. С. 2343–2349.
- Kuznetsova R., Ermolina E., Gadirov R., Mayer G., Stuzhin P., Kalashnikova I., Korovin Yu. Spectralluminescent, photochemical and nonlinear optical properties of some cyclotetrapyrrole derivatives in liquid and solid media // J. Porphyrins and Phthalocyanines. 2008. V. 12. N 11. P. 1173-1181.
- 9. Кузнецова Р.Т., Савенкова Н.С., Майер Г.В., Арабей С.М., Павич Т.А., Соловьев К.Н. Спектральные и нелинейно-оптические свойства металлокомплексов 1,2-нафталоцианина в силикатных гель-матрицах // Ж. прикл. спектроскопии. 2007. Т. 74. № 4. С. 439–446.
- 10. Бреусова Е.Г., Кузнецова Р.Т., Копылова Т.Н., Николаев С.В. Фотопревращения замещенных оксазола при возбуждении эксиплексным XeCl-лазером // Химия высок. энергий. 1998. Т. 32. № 4. С. 281–284.
- Weiss R., Fischer J. Lanthanide Phthalocyanine Complexes // The Porphyrin Handbook. V. 16 / K. Kadish, K. Smith, R. Guilard, Eds. N.Y.: Academic Press, 2003. P. 171-246.
- Gorbunova Y., Rodriguez-Mendez M., Kalashnikova I., Tomilova L., Saja J. Langmuir–Blodgett films of bis(octakispropyloxy) samarium bisphthalocyanine. Spectroscopic and gas-sensing properties // Langmuir. 2001. V. 17. N 16. P. 5004–5010.
- 13. Калашникова И.П., Жуков И.В., Томилова Л.Г., Зефиров Н.С. Синтез и спектрально-электрохимические

Взаимодействие циклотетрапиррольных соединений с мощным лазерным излучением...

исследования гексадекапропилоксизамещенных дифталоцианиновых комплексов редкоземельных элементов // Изв. РАН. Сер. Хим. 2003. № 8. С. 1621–1625.

14. Горбунова Ю.Г., Лапкина Л.А., Мартынов А.Г., Бирюкова И.В., Цивадзе А.Ю. Синтез, строение и особенности комплексообразования краунфталоцианинатов редкоземельных элементов // Координац. химия. 2004. Т. 30. № 4. С. 263–270.

15. Gouterman M. Optical spectra and electronic structure of porphyrins and related rings // The Porphyrins / Ed. D. Dolphin. N.Y. etc.: Academic Press, 1978. V. 3. P. 1–165.

R.T. Kuznetsova, E.G. Ermolina, E.N. Telminov, G.V. Mayer, S.M. Arabei, T.A. Pavich, K.N. Soloviov, I.P. Kalashnikova, P.A. Stuzhin. The interaction of cyclotetrapyrrole compounds with the high-power laser radiation in solutions and solid matrices.

The features of cyclotetrapyrroles interaction with high-power laser radiation in solutions and in porous xerogels doped with cyclotetrapyrroles are discussed on the base of investigation of spectral-luminescent, protonacceptor properties, photochemical and nonlinear characteristics. The capacity of exhibition of specific physical-chemical properties depending on the structure of interacting pairs and intensity of the incident-irradiation is shown.