тока подключаются уже к выходам микросхемы L298P вместе со светодиодами, которые подают световой сигнал при достижении максимальной скорости вращения.

Контроллер управляет работой электродвигателя постоянного тока, используя широтно-импульсную модуляцию (ШИМ).

Далее проверяется работа собранной схемы в соответствии с разработанной программой. Запускается эмуляция программы, в процессе которой визуально наблюдаем вращение электродвигателей и управление скоростью и направлением вращения в соответствии скважностью импульсов, задаваемых микроконтроллером.

#### ЛИТЕРАТУРА

- 1. Матвеенко И.П. Методика изучения микроконтроллеров AVR. «Информатизация образования», №2. 2013. С.86-95.
- 2. Электронный pecypc: http://fb.ru/article/206826/arduino-dlya-nachinayuschih-poshagovyie-instruktsii-programmirovanie-i-proektyi-arduino-s-chego-nachat.

# Герасимович Л.С., Косько А.Н. *Институт энергетики НАН Беларуси*

### СТРУКТУРА СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ОБЛУЧЕНИЕМ ПОРОСЯТ-ОТЪЕМЫШЕЙ ПО ПОВЕДЕНИЮ ЖИВОТНЫХ

На рисунке 1 представлен общий вид станка доращивания поросят-отъемышей с системой инфракрасного облучения и интеллектуального управления по поведению животных.

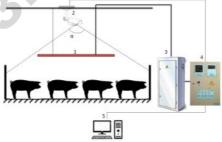



Рисунок 1 — Общий вид станка доращивания поросят-отъемышей с системой инфракрасного облучения и интеллектуального управления по поведению животных 1 — ИК-излучатели; 2 — видеокамера; 3 — силовой шкаф; 4 — шкаф управления; 5 — компьютер.

Аппаратные средства системы управления, как видно из рисунка, включают интеллектуальную видеокамеру, шкаф управления и автоматизированное рабочее место; программные – специализированную программу, работающую по представленному алгоритму управления.

На рисунке 2 представлена структурная схема системы управления ИК облучением по поведению животных.

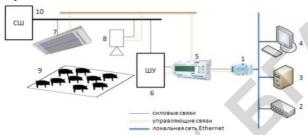



Рисунок 2 — Структурная схема системы управления ИК облучением по поведению животных

1 – конвертер интерфейса Ethernet; 2 – сетевой коммутатор; 3 – сервер сбора и обработки данных; 4 – APM; 5 – контроллер; 6 – шкаф управления; 7 – ИК излучатель; 8 – видеокамера; 9 – секция группы поросят-отъемышей; 10 – силовой шкаф.

Работа системы управления начинается с получения изображения секции поросят-отъемышей 9 интеллектуальной камерой 8. Над каждым станком располагается отдельная камера. Однако, в общем случае необходимое количество камер не равно числу станков и определяется исходя из геометрических параметров помещения (высоты помещения и площади станка), разрешения и угла обзора камеры.

Полученное камерой изображение по каналам связи передается на сервер 3 по локальной сети Ethernet. Обработка данных в режиме реального времени осуществляется на автоматизированном рабочем месте 4. Данные о состоянии животных сохраняются на сервере 3.

После принятия решения о благоприятности условий содержания животных, управляющий сигнал поступает в шкаф управления 6 и далее к исполнительному рабочему органу – ИК облучателю 7.

Для соединения всех рабочих узлов сети устанавливается коммутатор 2. С целью согласования форматов данных, используемых микроконтроллером 5 и сетевыми устройствами, устанавливается конвертер интерфейса Ethernet 1.

Через интервал, равный постоянной времени системы, перечисленные операции повторяются. Величина данного интервала определяется инертностью системы, а значение равно времени нагрева кожного покрова и шерсти (то есть тепловой инертности) и также времени афферентного синтеза [1, 2]. Следовательно, повторение перечисленных операций может осуществляться с интервалом от 2 до 5 мин в зависимости от половозрастной группы животных.

Для данной системы управления разработаны технические требования. Предъявляемые требования соответствуют общим требованиям к автоматизированным системам управления [3].

#### ЛИТЕРАТУРА

- 1. Биотехнологии интенсивного свиноводства / Г.М. Бажов, В.И. Комлацкий.- М.: Росагропромиздат, 1989. 269 с.
- 2. Биотехнология свиноводства / В.С. Смирнов, В.В. Горин, И.П. Шейко.- М.:Ураджай, 1993. 229с.
- 3. Межгосударственный стандарт ГОСТ 24.104-85 «Единая система стандартов автоматизированных систем управления. Автоматизированные системы управления. Общие требования», Москва, Стардартинформ, 2009г.

## Горустович Т.Г., Чернявская А.С.

УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь

## АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

**Ключевые слова:** Автоматизация, производственный процесс, система управления. Automation, production process, control system.

**Аннотация:** В статье обосновываются преимущества средств автоматизации, позволяющие оперативно решать задачи оптимизации производственно-технологических процессов.

The article proves the advantages of automation tools that allow to solve operatively the problems of optimization of production and technological processes.