УДК 631.374

О ЦЕЛЕСООБРАЗНОСТИ ПРИМЕНЕНИЯ КАНАТНОТЯГОВЫХ И ПОГРУЗОЧНЫХ УСТРОЙСТВ ПРИ ВЫПОЛНЕНИИ ПОЛЕВЫХ РАБОТ

В.Я. Тимошенко, к.т.н., доцент, М.М. Шубенок, магистрант, Д.М. Савик, студент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Ввеление

Целью статьи является изыскание альтернативы трактору, как тяговому средству, использование которой исключала бы необходимость движения по полю тягового средства в месте с рабочей машиной.

Основная часть

В Беларуси ежегодно расходуется более 600 тыс. тонн дизельного топлива. Экономия возможна, за счет совершенствования и применения технологий возделывания сельскохозяйственных культур, за счет поддержания машинно-тракторного парка в работоспособном, технически исправном состоянии. Известна идея мостового земледелия, которая весьма заманчива тем, что её использование позволяет исключить переуплотнение почвы, за счет снижения вредного воздействия на нее ходовых систем и сократить энергозатраты на самопередвижение агрегата.

Идея мостового земледелия давно будоражит умы агрономов и агроинженеров. Сама она чрезвычайно проста и при её проектировании невидно никаких принципиальных преград для реализации. Суть её в том, что почвообрабатывающие орудия крепят на раме мостового крана, который передвигается по уложенному на земле рельсовому пути с заданной и регулируемой скоростью. Для этого в поле предварительно прокладываются рельсы, по которым движется мостовой кран, — подобный тем, что применяются на товарных дворах, только располагается он низко, почти над самой землёй.

Есть в таком проекте и недостатки: земледелие привязано к рельсовым путям, почва уплотняется в местах укладки рельсов. Но пролет крана, а значит, ширину захвата его и расстояние между рельсами можно делать намного больше, чем колея трактора:

20...30 м и даже 50... 150 м, а возможно, и еще больше. Мостовое земледелие является одним из самых эффективных технических решений в сельскохозяйственном производстве. Эта технология давно известна, постоянно совершенствуется и применяется в некоторых странах. Предлагается вместо прокладки дорожек на противоположных сторонах обрабатываемого поля устанавливать по одному мобильному тягово-подъёмному лебёдочному агрегату с подъемными механизмами оснащенных системами навигации.

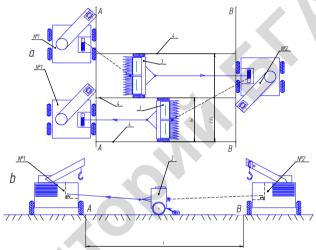


Рисунок — Кинематическая схема канатного земледелия a — вид сбоку; δ — вид в плане.

Для анализа экономии энергии при выполнении сельскохозяйственных операций за счёт исключения передвижения тракторов по полю рассмотрим баланс мощности мобильного машиннотракторного агрегата (МТА).

Баланс мощности МТА принято представлять в виде:

$$N_e = N_f + N_i + N_{\mathrm{T}} + N_{\mathrm{MS}} + N_{\delta}$$

где N_e – эффективная мощность двигателя, потребная для движения агрегата при нарезке гребней; N_f – мощность, необходимая на преодоление сопротивления качению трактора; N_i – мощность,

теряемая при движении на подъём; $N_{_{\rm T}}$ – тяговая мощность; $N_{_{M\!S}}$ – мощность, теряемая в трансмиссии трактора; N_{δ} – мощность, теряемая при буксовании движителей.

В качестве примера рассмотрим передвижение трактора Беларус 3022ДЦ.1 по полю, подготовленному под посев. Исходные данные для этого трактора и агрегата примем: коэффициент сопротивления качению f=0,2, вес трактора G_{mp} =80 кH, уклон поля 5%, буксование δ =15%, коэффициент использования номинальной мощности η_{Ne} =0,9-0,95, мощность двигателя N_e =220 кВт.

Подставляя численные значения входящих величин в известные зависимости получим:

$$N_{mp.} = 220 \cdot 0.95(1 - 0.85) = 31.35 \text{ kBT};$$
 $N_f = 0.20 \cdot 80 \cdot 3.0 = 48 \text{ kBT};$
 $N_{\alpha} = 0.05 \cdot 80 \cdot = 4 \text{ kBT};$
 $N_{\delta} = 220 \cdot 0.95 \cdot 0.85 \cdot \frac{15}{100} = 26.6 \text{ kBT};$
 $N_{\kappa p} = P_{\kappa p} \cdot V_{\kappa p} = 30 \cdot 3.0 = 90 \text{ kBT}.$

Суммарные потери мощности на передвижение трактора составляют:

$$N_{nomepb}^{o6} = 31,35 + 48,00 + 12,00 + 26,60 = 117,95 = 118 \text{ kBt}.$$

Таким образом, на самопередвижение трактора Беларус 3022 по полю, подготовленному под посев требуется мощность 118 кВт, которая на 31% выше мощности необходимой для выполнения полезной работы (90 кВт).

Если учесть, что нормативная годовая загрузка трактора T_{zoo} =1000 u/zoo, то применение канатной технологии выполнения с.-х. операций позволила бы ежегодно экономить энергии на замене тяги тракторами Беларус 3022 на канатную тягу около 118000 кВт-ч.

Заключение

Применение предлагаемого канатного земледелия в сочетании с гидроманипуляторами позволяет значительно снизить затраты энергии на выполнение технологических операций за счет исключения затрат на передвижение тракторов по полю.

Экономия энергии за счет применения канатного земледелия с использованием гидроманипулятора может составить до 118 тыс. кВт ч в год на один трактор Беларус 3022 в сравнении с применением этого трактора.

Литература

- 1. Устройство для канатного земледелия: патент на изобретение Республика Беларусь МПК А 01В 3/68 (2006.01)/В.Я Тимошенко, Д.А. Жданко, М.М. Шубенок, А.Н. Лавшук; заявитель Белорусский государственный аграрный технический университет. № а 20131594; заявл. 2013.12.26; опубл. Заявл/ 2015.08.30
- 2. Жалнин, Э. В. История развития и перспектиы внедрения мостового растениеводства / Э. В. Жалнин, Р. С. Муфтеев //Тракторы и с.-х. машины. 2002. №5. С. 23-30.
- 3. Альтшуллер Г. С., Злотин Б. Л., Зусман А. В., Филатов В. И. Поиск новых идей: от озарения к технологии. Кишинев: Картя Молдовеняска, 1989.

УДК 664:535.2

НЕТЕРМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ПИЩЕВЫХ ПРОДУКТОВ

М.А. Челомбитько, к.с-х.н, доцент, В.С. Корко, к.т.н., доцент, П.В. Ковтик, студент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Нетермические методы обработки консервации пищевых продуктов интересует ученых, производителей и потребителей, поскольку они считаются более энергоэффективными и оказывают минимальное воздействие на пищевые и сенсорные свойства продуктов и продлевают срок годности путем ингибирования или уничтожения микроорганизмов.

Целью исследований было проанализировать имеющиеся или развивающиеся технологии нетепловой обработки: высокое давление (HPP), ультразвук, импульсный свет, иррадиация, импульсные электрические поля, ультрафиолетовая обработка, холодная плазма, суперкритический диоксид углерода, микроволновое и радиочастотное нагревание.