HHE TPOrpaMMBbI TO3BOJIUT CYIIECTBEHHO YBEJIMYUTH CKOPOCTh U 3(P(DHeKTHB-
HOCTh 00pabOTKHU 3aKa30B. B pesynmeTare cokparieHne 3amacoB coctaBuT 173,0
TBIC. Py0., COKpaIleHne M3AEPKEeK MO 3aKazy — 5,6 TeIC. py0., pocT HOXOJ0B
Omaromaps cokpamenuro aedunutoB — 113,2 TeIC. pyod., mpUpocT 0bopaunBae-
Moctu — 8,4 mHEl, a peHTabeabHOCTH Mpoaax — 3,6 m.m. OOuwmii SKOHOMHYEe-
ckuii addekr cocraBur 264,8 ThIC. pYO.

Cnucok ucnoJib30BaHHOW JTUTEPATYPhI
1.060cHOBaHKE HaIpaBJIeHUH TOBBIMEHUS YQ(EKTUBHOCTH (YHKIIMOHUPO-
BaHUs MPENIPHATHS Ha OCHOBE MHHOBALMOHHOH nestenbHocTh / JI. A. myma-
HuHa [u 1p.]; Hayd. pyk. O. I'. dosbeinosa / HUPC BI'DY: cOopHHK HayuyHBIX
crareil. Boin. 7 / [penxon: A.A. beikoB (npen. u ap.]; M-Bo obpazoBanus Pecrr.
benapycs, benopyc. roc. a3koH. yH-T. — Munck: BI'QVY, 2018. — C. 212-216.

YK 004.056.53

DESIGN OF A SPECIAL-PURPOSE MULTIPROCESSOR ARRAY
FOR DATA PROTECTION AND DIGITAL SIGNATURE

Tiunchick A.A., PhD, assistant professor
Belarusian State Agrarian Technical University, Minsk

KiroueBsle cnoBa: 3amura aaHHbX, DLII, MHOrOmpoLECcCOpHBIE YCTPOU-
CTBa, MOJIyJIbHOE YMHOXXKeHHE MOHTroMepHu.

Key words: data protection, digital signature, multiprocessor array, Mont-
gomery modular multiplication.

Amnsortanus: IlpeacraBieHo cnenmanM3upOBaHHOE MHOTOINPOLIECCOPHOE
YCTPOMCTBO VISt MOJYJILHOTO YMHOXEHUsI ¥ BO3BEACHUS B CTEIICHb I10 aJro-
putMy MoHTromepu. Y CTpOHCTBO MOXKET OBITh Peann30BaHO HA OCHOBE TeX-
Honorur CbUC nnu ITJIM.

Summary: A special-purpose multiprocessor array for Montgomery modu-
lar multiplication and exponentiation is presented/ The array can be imple-
mented via VLSI or FPGA technology/

Public-key cryptography plays an important role in digitalization of the
economy. Modular multiplication is the basis of many encryption and digital
signature algorithms. Efficient implementation of the operation is important to
process larger numbers and increase cryptographic strength. Besides that, ehere
exists a great demand for developing special-purpose hardware to speed up the
computations.

292

https://bsatu.by/ru

A modular exponentiation operation M°modn cannot be implemented in
a naive fashion by first exponentiating M ° and then performing reduction
modulo 7, since the intermediate result M ° contains too many digits. Hence,
the intermediate results of the exponentiation are to be reduced modulo # at
each step. The straightforward reduction modulo n involves a number of
arithmetic operations (division, subtraction, etc.), and is very time consuming.
Therefore, special algorithms for modular operations are to be used.

P. L. Montgomery [1] proposed an algorithm for modular multiplication
AB mod m without trial division. Let 4, B be elements of Z,, , where Z,, is the

m?

set of integers between 0 and m — 1. Let & be an integer coprime to m, and
h > m. Montgomery modular multiplication (MM) is an operation

h,m

A® B=A-B-h ' modm. (1)

Implementation of this operation is much easier than a normal reduction
modulo m; and is based on some facts from number theory. The use of MM
does not result in the desirable speed-up immediately. To compute
AB mod m , a computation of MM is to be performed twice:

C=Ah,mB=A-B-h"mod m,and

Ch,m(h2 modm) = ABh™ - h? -h ' modm = ABmodm ,

where #*modm is computed in advance. The advantage of using two
Montgomery multiplications instead of one operation of plain modular
multiplication is uncertain.

An efficient way to compute 4B mod m using MM is by exploiting special

representations of 4 and B. Let X be called an image of X if
X =X -hmodm , h>m . If h and m are relatively prime, then there exists a

one-to-one correspondence between X and X.MMof 4 and B is isomorphic
to the modular multiplication of 4 and B. Indeed,

=h,m= h,m —_—
A® B=(Ahmodm) ® (Bhmodm)=(AB)hmodm = A - B.

The reduction of X to X and vice versa can be carried out on the basis of MM:

h,m —
X ®(h*modm)=X -h*h 'modm = X, 2)
=—h,m
X®1=X-hmodm-1-h"'modm = X. 3)

293

By virtue of the isomorphism of modular multiplication and MM, the use of the
h,m
images is very convenient for exponentiation. Let (® X)" denote (n—1) MMs of X

by itself. To compute ¥ = X" modm , we should perform three steps: first, convert X

hom=—

to X by (2); next, realize ? =(® X)" = X" ; and finally, convert YtoY by (3).
Several algorithms suitable for hardware implementation of MM are known.

In this paper, the design of a multiprocessor array is based on the algorithm
described and analysed in [2]. Let numbers A, B and m be written with radix 2:

N-1 M M-1
4=Y"a;-2', B=Yh-2, m=>m2,
i=0 i=0 i=0

where a,, b, m €{0;1}, N and M are the numbers of digits in 4 and m,

respectively. B satisfies condition B < 2m , and has at most M +1 digits. m is
odd (to be coprime to the radix 2). Extend a definition of 4 with an extra zero
digit a, =0. The algorithm for MM is given below.
s:—0;
For i:=0 to N do
Begin
u; = ((SO +a; *bo)*w)modr)
s=(s+a,*B+u; *m)divr
End

Initial condition B <2m ensures that intermediate and final values of s are
bounded by 3m . The use of an iteration with a, =0 ensures that the final
value s<2m . Hence, this value can be used for B input in a subsequent
multiplication. Since 2 and m are relatively prime, we can precompute value
w= (2—m0)71m0d2. An implementation of the operations div 2 and mod 2 is
trivial (shifting and inspecting the lowest digit, respectively). Algorithm (4)
returns either s=4-B-2"""'modm or s+m (because s<2m). In any case,
this extra m has no effect on subsequent arithmetics modulo 2. It should be
noted, that the number of iterations in (4) affects /. In our case, (4) presents the
implementation of (1) with #=2"*".

To design multiprocessor array, first we construct a data dependency graph
(also referred as DG) for Algorithm (4). For N- and M-digit integers 4 and B, a
graph consists of N +2 rows and M +1 columns. The i-th row represents the
i-th iteration of (4). Arrows are associated with digits transferred along

294

indicated directions. Each vertex wv(j,i), ie€{0,.,N},je{0,..,M} 1is
associated with the operation

(i+1)
S5

(i)

+2-cp =8 Ha; by tuom;+cy,

where SA(/.i) denotes the ; -th digit of the i -th partial product of s, c,,, and

c

-, are the output and input carries. Rightmost starred vertices, i.e., vertices
marked with «...», perform calculations of u,:= ((s0 +a,*by)* w)m0d2
besides an ordinary operation. Using standard notation, the vertex operations
can be specified in terms of inputs/outputs as follows:

Sout ¥ 27 Coup 7= Sy + @y by F 1y, -y, €

b, =b,, (5)

out * ain’ 4

<
Il

for plain vertices, and
uout = (Sin + ain ’ bin) ’ Wi

no

Cout -~ M, (Sin’ ip * bin Ui " My,), (6)
Qour -~ Q> bout = bin’ Moy = My
for starred vertices, where mayj,(s,,,a,, - b,,,u,;, -m;,) is 1 if at least two out

of three entries are 1s; otherwise it is 0.
If instead of digits 4 we input digits B both, at the topmost and rightmost
vertices of DG, then the graph model represents a calculation of

h,m h,m
B® B=(® B)?,
h,m

called M- squaring. To represent the computation of (® B)’, two graphs
can be joined in a single graph by connecting s, -outputs of the first graph with
b, -inputs of the next (identical) graph, in which rightmost inputs a; get digits
of B as before. To compute (h,mB)", we will need n—1 joined graphs. The
resulting graph model consists of vertices located in a rectangular domain
V=vE,)0<i<nx(M+2)-1,0<j<M+1}. The graph 1is almost
homogeneous, with exceptional starred vertices in the rightmost column.

However, a faster way to compute B” modm is by reducing the computation
to a sequence of modular squares and multiplications. Let [#,...n,] be a binary

representation of n, ie., n=ny+2nm +---+2%n,, n; {01}, k= Liog, 7],

n, =1.Let B denote a partial product. We start out with § = B and run from n,_,

295

to n, as follows: if n; =0, then B:= BZ; if n; =1, then B::B2 *B. Thus, we

need at most 2k operations to compute B” . This algorithm has an advantage over
a low-to-high binary method of exponentiation since, when implemented in
hardware, it requires only one set of storage registers for intermediate results as
opposed to two for a low-to-high method.

To perform M-squaring the dependency graph for M-multiplication can be

modified in such a way that all the b;’s inputs enter the graph only via the top-

row vertices. This eliminates rightmost a, -inputs entirely. To deliver all b;s to

the rightmost vertices, we have to pump them through the graph in a direction
determined by vector (1,-1). To do it, additional arcs x;’s for propagation of

b;’s digits have to be added to DG. Vertex operations are to be slightly modified

to provide propagation of these digits: each non-starred vertex just transmits its x-
input data to an x-output, while when arriving at the rightmost vertices, these
data are “reflected” and propagated to the left as if they were ordinary a,’s
input data. It is known that the output value s <2m . Hence, we need at most
M +1 rows for the “reflected” factor and an additional row for the extension
with an extra zero digit. Using standard notation, the vertex operations for M-
squaring can be specified in terms of inputs/outputs as follows:

Sout +2- cout = Sin + ain ’ bin + uin ’ min + Cin ’
out = xin ’ (7)
m

aout = ain ’ X

b, =b =m
for plain vertices, and for starred vertices the operation is:

u:= (Sin +xin bm)lll/l

in? uout T uin > out * in’

no

Szmt +2.cout = Sin +xin .bin +u.min’ (8)
cout = majZ (Sin > Xin bin ’uin ’ min
uout =u, aout = xin > bout = bin > mout = min‘

DG for an exponentiation as a whole is constructed as a composition of
graphs for M-multiplication and M-squaring by joining outputs of one graph
with corresponding inputs of the consecutive graph. There are at most 2«
graphs altogether, and the precise number of required graphs for M-
multiplication and M-squaring and the order in which they occur in the
composition is fully determined only by the binary representation of n. The
vertices of the resulting graph constitute a rectangular domain

Vy={v(i, /)| 0<i <2k x (M +2),0< j<M +1}, where k =|log,n].

296

The next stage of the design is a space-time mapping of domain ¥, onto a

one-dimensional domain of processing elements (PE). Spatial mapping is
determined by a linear operator with matrix P=(10), which maps an
indefinitely long composition of the cohered DGs onto a linear processor array
with M +1 processing elements: each column of vertices is mapped onto one
PE. Hence, each PE has to be able to operate in two modes. To control the
operation modes, a sequence of one-bit control signals ¢ is fed into the
rightmost PE and propagated through the array. If ¢ =0 the PE implements an
operation for M-multiplication, if t=1, for M-squaring. The order in which
control signals are input is determined by the binary representation of n. A
timing function that provides a correct order of operations is #(v) =2i+ j. The

total running time is thus at most (4|_log2nJ +D)M + 8|_10g2nJ time units.

References
1. Montgomery, P.L. Modular multiplication without trial division //
P.L. Montgomery Mathematics of Computations, 1985 (44) 519-521.
2. Walter, C.D. Systolic Modular Multiplication // IEEE Trans. on
Comput., vol. 42 (1993), No. 3, pp. 376-378.
3. Tiountchik, A.A. Systolic modular exponentiation via Montgomery
algorithm. // J. Electronics Letters. 1998. Vol. 34, No 9. pp. 8§74-875.

YAK 631.145

IHOKA3ATEJIM YPOBHA MEXAHU3AIIUU TPOU3BOACTBA
B OTPACJIAX ATPOITPOMBIIIJIEHHOI'O KOMIIJIEKCA

Hpiranos B.A., K.(p.-M.H., 101IeHT
YO «Benopycckuii eocyoapcmeennbviil azpaphvlii mexHu4ecKull YHUepcumemy,
2. Munck

KiroueBble croBa: arpOIpOMBINIICHHBI KOMIUICKC, MEXaHU3alHs, Kodhuim-
CHT MEXaHU3alUuH padoT, KOIPHUUHUECHT MEXaHU3AHU TPYa

Key words: agro-industrial complex, mechanization, work mechanization coef-
ficient, labor mechanization coefficient

AHHOTaIWs: B CTaThe JaHa KPaTKas XapaKTEepPUCTHKa JTaIllOB 3aMEHBl PYIHOTO
TpyZla MAaIIMHHBIM B OTPAcisiX arpolpOMBIIUICHHOIO KOMIIJIEKCA, NPUBEICHBI
COOTHOIICHHS IS pacyera Kod(h(UINEHTOB MEXaHN3alMu paboT U Tpy/a.

297

https://bsatu.by/ru

