

292

ние программы позволит существенно увеличить скорость и эффектив-
ность обработки заказов. В результате сокращение запасов составит 173,0
тыс. руб., сокращение издержек по заказу – 5,6 тыс. руб., рост доходов
благодаря сокращению дефицитов – 113,2 тыс. руб., прирост оборачивае-
мости – 8,4 дней, а рентабельности продаж – 3,6 п.п. Общий экономиче-
ский эффект составит 264,8 тыс. руб.

Список использованной литературы

1.Обоснование направлений повышения эффективности функциониро-
вания предприятия на основе инновационной деятельности / Д. А. Глуша-
нина [и др.]; науч. рук. О. Г. Довыдова // НИРС БГЭУ: сборник научных
статей. Вып. 7 / [редкол: А.А. Быков (пред. и др.]; М-во образования Респ.
Беларусь, Белорус. гос. экон. ун-т. – Минск: БГЭУ, 2018. – C. 212-216.

УДК 004.056.53

DESIGN OF A SPECIAL-PURPOSE MULTIPROCESSOR ARRAY

FOR DATA PROTECTION AND DIGITAL SIGNATURE

Tiunchick A.A., PhD, assistant professor
Belarusian State Agrarian Technical University, Minsk

Ключевые слова: защита данных, ЭЦП, многопроцессорные устрой-

ства, модульное умножение Монтгомери.
Key words: data protection, digital signature, multiprocessor array, Mont-

gomery modular multiplication.

Аннотация: Представлено специализированное многопроцессорное

устройство для модульного умножения и возведения в степень по алго-
ритму Монтгомери. Устройство может быть реализовано на основе тех-
нологии СБИС или ПЛМ.

Summary: A special-purpose multiprocessor array for Montgomery modu-
lar multiplication and exponentiation is presented/ The array can be imple-
mented via VLSI or FPGA technology/

Public-key cryptography plays an important role in digitalization of the

economy. Modular multiplication is the basis of many encryption and digital
signature algorithms. Efficient implementation of the operation is important to
process larger numbers and increase cryptographic strength. Besides that, еhere
exists a great demand for developing special-purpose hardware to speed up the
computations.

https://bsatu.by/ru

293

A modular exponentiation operation nM e mod cannot be implemented in
a naive fashion by first exponentiating eM and then performing reduction
modulo n, since the intermediate result eM contains too many digits. Hence,
the intermediate results of the exponentiation are to be reduced modulo n at
each step. The straightforward reduction modulo n involves a number of
arithmetic operations (division, subtraction, etc.), and is very time consuming.
Therefore, special algorithms for modular operations are to be used.

P. L. Montgomery [1] proposed an algorithm for modular multiplication
mAB mod without trial division. Let A, B be elements of mZ , where mZ is the

set of integers between 0 and m – 1. Let h be an integer coprime to m, and
h > m. Montgomery modular multiplication (MM) is an operation

.mod= 1
,

mhBABA
mh

 (1)

Implementation of this operation is much easier than a normal reduction
modulo m; and is based on some facts from number theory. The use of MM
does not result in the desirable speed-up immediately. To compute

mAB mod , a computation of MM is to be performed twice:

mhBAmBAhC mod=,= 1 , and

mABmhhABhmhmCh mod=mod=)mod(, 1212 ,

where mh mod2 is computed in advance. The advantage of using two
Montgomery multiplications instead of one operation of plain modular
multiplication is uncertain.

An efficient way to compute mAB mod using MM is by exploiting special

representations of A and B. Let X be called an image of X if

mhXX mod= , mh > . If h and m are relatively prime, then there exists a

one-to-one correspondence between X and X . MM of A and B is isomorphic
to the modular multiplication of A and B. Indeed,

.=mod)(=)mod()mod(=
,,

BAmhABmBhmAhBA
mhmh

The reduction of X to X and vice versa can be carried out on the basis of MM:

,=mod=)mod(122
,

XmhhXmhX
mh

 (2)

.=mod1mod=1 1
,

XmhmhXX
mh

 (3)

294

By virtue of the isomorphism of modular multiplication and MM, the use of the

images is very convenient for exponentiation. Let n
mh

X)(
,

 denote 1)(n MMs of X

by itself. To compute mXY n mod= , we should perform three steps: first, convert X

to X by (2); next, realize nn
mh

XXY =)(=
,

 ; and finally, convert Y to Y by (3).

Several algorithms suitable for hardware implementation of MM are known.
In this paper, the design of a multiprocessor array is based on the algorithm
described and analysed in [2]. Let numbers A, B and m be written with radix 2:

,2=,2=,2=
1

0=0=

1

0=

i
i

M

i

i
i

M

i

i
i

N

i

mmbBaA

where ia , ib , im {0;1} , N and M are the numbers of digits in A and m,

respectively. B satisfies condition mB 2< , and has at most 1M digits. m is
odd (to be coprime to the radix 2). Extend a definition of A with an extra zero
digit 0=Na . The algorithm for MM is given below.

End

Begin

dotoFor

rmuBass

rwbasu

Ni

s

ii

ii

div)**(:

mod*)*(:

0:

0;:

00

 (4)

Initial condition mB 2< ensures that intermediate and final values of s are
bounded by m3 . The use of an iteration with 0=Na ensures that the final

value ms 2< . Hence, this value can be used for B input in a subsequent
multiplication. Since 2 and m are relatively prime, we can precompute value

2mod)(2= 1
0

mw . An implementation of the operations div 2 and mod 2 is

trivial (shifting and inspecting the lowest digit, respectively). Algorithm (4)

returns either mBAs n mod2= 1 or ms (because ms 2<). In any case,
this extra m has no effect on subsequent arithmetics modulo m . It should be
noted, that the number of iterations in (4) affects h. In our case, (4) presents the

implementation of (1) with 12= Nh .
To design multiprocessor array, first we construct a data dependency graph

(also referred as DG) for Algorithm (4). For N- and M-digit integers A and B, a
graph consists of 2N rows and 1M columns. The i-th row represents the
i -th iteration of (4). Arrows are associated with digits transferred along

295

indicated directions. Each vertex),(ijv , }{0,...,},{0,..., MjNi is

associated with the operation
,:=2)(1)(

1 injiji
i

jout
i

j cmubascs

where)(i
js denotes the j -th digit of the i -th partial product of s , outc and

inc are the output and input carries. Rightmost starred vertices, i.e., vertices

marked with «…», perform calculations of 2mod*)*(:= 00 wbasu ii

besides an ordinary operation. Using standard notation, the vertex operations
can be specified in terms of inputs/outputs as follows:

,:=2 ininininininoutout cmubascs

,:=,:= inoutinout bbaa (5)

,:=,:= inoutinout mmuu

for plain vertices, and
,)(:= ininininout wbasu

),,,(:= 2 inininininout mubasmajc (6)

,:=,:=,:= inoutinoutinout mmbbaa

for starred vertices, where),,(2 ininininin mubasmaj is 1 if at least two out

of three entries are 1s; otherwise it is 0.
If instead of digits A we input digits B both, at the topmost and rightmost

vertices of DG, then the graph model represents a calculation of

,)(= 2
,,

BBB
mhmh

called M- squaring. To represent the computation of 3
,

)(B
mh

 , two graphs

can be joined in a single graph by connecting
js -outputs of the first graph with

jb -inputs of the next (identical) graph, in which rightmost inputs ia get digits

of B as before. To compute nmBh),(, we will need 1n joined graphs. The

resulting graph model consists of vertices located in a rectangular domain
1}01,2)(0|),({=1 MjMnijivV . The graph is almost

homogeneous, with exceptional starred vertices in the rightmost column.

However, a faster way to compute mBn mod is by reducing the computation
to a sequence of modular squares and multiplications. Let][0 knn be a binary

representation of n, i.e., k
k nnnn 22= 10 , {0;1}jn , nk log= 2 ,

1=kn . Let denote a partial product. We start out with B= and run from 1kn

296

to 0n as follows: if 0=jn , then 2:= ; if 1=jn , then B*:= 2 . Thus, we

need at most k2 operations to compute nB . This algorithm has an advantage over
a low-to-high binary method of exponentiation since, when implemented in
hardware, it requires only one set of storage registers for intermediate results as
opposed to two for a low-to-high method.

To perform M-squaring the dependency graph for M-multiplication can be
modified in such a way that all the jb ’s inputs enter the graph only via the top-

row vertices. This eliminates rightmost ia -inputs entirely. To deliver all jb s to

the rightmost vertices, we have to pump them through the graph in a direction
determined by vector 1)(1, . To do it, additional arcs jx ’s for propagation of

jb ’s digits have to be added to DG. Vertex operations are to be slightly modified

to provide propagation of these digits: each non-starred vertex just transmits its x-
input data to an x-output, while when arriving at the rightmost vertices, these
data are “reflected” and propagated to the left as if they were ordinary ia ’s

input data. It is known that the output value ms 2< . Hence, we need at most
1M rows for the “reflected” factor and an additional row for the extension

with an extra zero digit. Using standard notation, the vertex operations for M-
squaring can be specified in terms of inputs/outputs as follows:

,:=2 ininininininoutout cmubascs

,:=,:= inoutinout xxaa (7)

,:=,:=,:= inoutinoutinout mmuubb

for plain vertices, and for starred vertices the operation is:
,)(:= inininin wbxsu

,:=2 ininininoutout mubxscs (8)

),,,(:= 2 inininininout mubxsmajc

.:=,:=,:=,:= inoutinoutinoutout mmbbxauu

DG for an exponentiation as a whole is constructed as a composition of
graphs for M-multiplication and M-squaring by joining outputs of one graph
with corresponding inputs of the consecutive graph. There are at most k2
graphs altogether, and the precise number of required graphs for M-
multiplication and M-squaring and the order in which they occur in the
composition is fully determined only by the binary representation of n. The
vertices of the resulting graph constitute a rectangular domain

1}02),(20|),({=2 MjMkijivV , where nk log= 2 .

297

The next stage of the design is a space-time mapping of domain 2V onto a

one-dimensional domain of processing elements (PE). Spatial mapping is
determined by a linear operator with matrix 0)(1=P , which maps an

indefinitely long composition of the cohered DGs onto a linear processor array
with 1M processing elements: each column of vertices is mapped onto one
PE. Hence, each PE has to be able to operate in two modes. To control the
operation modes, a sequence of one-bit control signals is fed into the
rightmost PE and propagated through the array. If 0= the PE implements an
operation for M-multiplication, if 1= , for M-squaring. The order in which
control signals are input is determined by the binary representation of n . A
timing function that provides a correct order of operations is jivt 2=)(. The

total running time is thus at most nMn log81)log(4 22 time units.

References
1. Montgomery, P.L. Modular multiplication without trial division //

P.L. Montgomery Mathematics of Computations, 1985 (44) 519-521.
2. Walter, C.D. Systolic Modular Multiplication // IEEE Trans. on

Comput., vol. 42 (1993), No. 3, pp. 376-378.
3. Tiountchik, A.A. Systolic modular exponentiation via Montgomery

algorithm. // J. Electronics Letters. 1998. Vol. 34, No 9. pp. 874–875.

УДК 631.145

ПОКАЗАТЕЛИ УРОВНЯ МЕХАНИЗАЦИИ ПРОИЗВОДСТВА
В ОТРАСЛЯХ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА

Цыганов В.А., к.ф.-м.н., доцент
УО «Белорусский государственный аграрный технический университет»,
г. Минск

Ключевые слова: агропромышленный комплекс, механизация, коэффици-
ент механизации работ, коэффициент механизации труда
Key words: agro-industrial complex, mechanization, work mechanization coef-
ficient, labor mechanization coefficient

Аннотация: в статье дана краткая характеристика этапов замены ручного
труда машинным в отраслях агропромышленного комплекса, приведены
соотношения для расчета коэффициентов механизации работ и труда.

https://bsatu.by/ru

