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ние программы позволит существенно увеличить скорость и эффектив-
ность обработки заказов. В результате сокращение запасов составит 173,0 
тыс. руб., сокращение издержек по заказу – 5,6 тыс. руб., рост доходов 
благодаря сокращению дефицитов – 113,2 тыс. руб., прирост оборачивае-
мости – 8,4 дней, а рентабельности продаж – 3,6 п.п. Общий экономиче-
ский эффект составит 264,8 тыс. руб. 
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Аннотация: Представлено специализированное многопроцессорное 

устройство для модульного умножения и возведения в степень по алго-
ритму Монтгомери. Устройство может быть реализовано на основе тех-
нологии СБИС или ПЛМ.  

Summary: A special-purpose multiprocessor array for Montgomery modu-
lar multiplication and exponentiation is presented/ The array can be imple-
mented via VLSI or FPGA technology/  

 
Public-key cryptography plays an important role in digitalization of the 

economy. Modular multiplication is the basis of many encryption and digital 
signature algorithms. Efficient implementation of the operation is important to 
process larger numbers and increase cryptographic strength. Besides that, еhere 
exists a great demand for developing special-purpose hardware to speed up the 
computations.  
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A modular exponentiation operation nM e mod  cannot be implemented in 
a naive fashion by first exponentiating eM  and then performing reduction 
modulo n, since the intermediate result eM  contains too many digits. Hence, 
the intermediate results of the exponentiation are to be reduced modulo n at 
each step. The straightforward reduction modulo n involves a number of 
arithmetic operations (division, subtraction, etc.), and is very time consuming. 
Therefore, special algorithms for modular operations are to be used. 

P. L. Montgomery [1] proposed an algorithm for modular multiplication 
mAB mod  without trial division. Let A, B be elements of mZ , where mZ  is the 

set of integers between 0 and m – 1. Let h be an integer coprime to m, and 
h > m. Montgomery modular multiplication (MM) is an operation 

 

.mod= 1
,

mhBABA
mh

  (1) 
 

Implementation of this operation is much easier than a normal reduction 
modulo m; and is based on some facts from number theory. The use of MM 
does not result in the desirable speed-up immediately. To compute 

mAB mod , a computation of MM is to be performed twice: 
 

mhBAmBAhC mod=,= 1 , and 
 

mABmhhABhmhmCh mod=mod=)mod(, 1212   , 

where mh mod2  is computed in advance. The advantage of using two 
Montgomery multiplications instead of one operation of plain modular 
multiplication is uncertain. 

An efficient way to compute mAB mod  using MM is by exploiting special 

representations of A and B. Let X  be called an  image of X  if 

mhXX mod=  , mh > . If h  and m  are relatively prime, then there exists a 

one-to-one correspondence between X and X . MM of A  and B  is isomorphic 
to the modular multiplication of A and B. Indeed, 

 

.=mod)(=)mod()mod(=
,,

BAmhABmBhmAhBA
mhmh

  
 

The reduction of X to X  and vice versa can be carried out on the basis of MM: 

,=mod=)mod( 122
,

XmhhXmhX
mh

  (2) 

.=mod1mod=1 1
,

XmhmhXX
mh

  (3) 
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By virtue of the isomorphism of modular multiplication and MM, the use of the 

images is very convenient for exponentiation. Let n
mh

X )(
,

  denote 1)( n  MMs of X 

by itself. To compute mXY n mod= , we should perform three steps: first, convert X 

to X  by (2); next, realize nn
mh

XXY =)(=
,

 ; and finally, convert Y  to Y by (3). 

Several algorithms suitable for hardware implementation of MM are known. 
In this paper, the design of a multiprocessor array is based on the algorithm 
described and analysed in [2]. Let numbers A, B and m be written with radix 2: 

,2=,2=,2=
1

0=0=
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0=

i
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i
i
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i
i
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i

mmbBaA  


 

where ia , ib , im  {0;1} , N and M are the numbers of digits in A and m, 

respectively. B satisfies condition mB 2< , and has at most 1M  digits. m is 
odd (to be coprime to the radix 2). Extend a definition of A with an extra zero 
digit 0=Na . The algorithm for MM is given below. 
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 (4) 

 

Initial condition mB 2<  ensures that intermediate and final values of s are 
bounded by m3 . The use of an iteration with 0=Na  ensures that the final 

value ms 2< . Hence, this value can be used for B input in a subsequent 
multiplication. Since 2 and m are relatively prime, we can precompute value 

2mod)(2= 1
0

mw . An implementation of the operations div 2 and mod 2 is 

trivial (shifting and inspecting the lowest digit, respectively). Algorithm (4) 

returns either mBAs n mod2= 1  or ms   (because ms 2< ). In any case, 
this extra m  has no effect on subsequent arithmetics modulo m . It should be 
noted, that the number of iterations in (4) affects h. In our case, (4) presents the 

implementation of (1) with 12= Nh . 
To design multiprocessor array, first we construct a data dependency graph 

(also referred as DG) for Algorithm (4). For N- and M-digit integers A and B, a 
graph consists of 2N  rows and 1M  columns. The i-th row represents the 
i -th iteration of (4). Arrows are associated with digits transferred along 
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indicated directions. Each vertex ),( ijv , }{0,...,},{0,..., MjNi   is 

associated with the operation 
,:=2 )(1)(

1 injiji
i

jout
i

j cmubascs 
  

where )( i
js  denotes the j -th digit of the i -th partial product of s , outc  and 

inc  are the output and input carries. Rightmost starred vertices, i.e., vertices 

marked with «…», perform calculations of   2mod*)*(:= 00 wbasu ii   

besides an ordinary operation. Using standard notation, the vertex operations 
can be specified in terms of inputs/outputs as follows: 

,:=2 ininininininoutout cmubascs   

,:=,:= inoutinout bbaa  (5) 

,:=,:= inoutinout mmuu  

for plain vertices, and 
,)(:= ininininout wbasu   

),,,(:= 2 inininininout mubasmajc   (6) 

,:=,:=,:= inoutinoutinout mmbbaa  

for starred vertices, where ),,(2 ininininin mubasmaj   is 1 if at least two out 

of three entries are 1s; otherwise it is 0. 
If instead of digits A we input digits B both, at the topmost and rightmost 

vertices of DG, then the graph model represents a calculation of 

,)(= 2
,,

BBB
mhmh

  

called M- squaring. To represent the computation of 3
,

)( B
mh

 , two graphs 

can be joined in a single graph by connecting 
js -outputs of the first graph with 

jb -inputs of the next (identical) graph, in which rightmost inputs ia  get digits 

of B as before. To compute nmBh ),( , we will need 1n  joined graphs. The 

resulting graph model consists of vertices located in a rectangular domain 
1}01,2)(0|),({=1  MjMnijivV . The graph is almost 

homogeneous, with exceptional starred vertices in the rightmost column. 

However, a faster way to compute mBn mod  is by reducing the computation 
to a sequence of modular squares and multiplications. Let ][ 0 knn   be a binary 

representation of n, i.e., k
k nnnn 22= 10   , {0;1}jn ,  nk log= 2 , 

1=kn . Let   denote a partial product. We start out with B=  and run from 1kn  
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to 0n  as follows: if 0=jn , then 2:=  ; if 1=jn , then B*:= 2 . Thus, we 

need at most k2  operations to compute nB . This algorithm has an advantage over 
a low-to-high binary method of exponentiation since, when implemented in 
hardware, it requires only one set of storage registers for intermediate results as 
opposed to two for a low-to-high method. 

To perform M-squaring the dependency graph for M-multiplication can be 
modified in such a way that all the jb ’s inputs enter the graph only via the top-

row vertices. This eliminates rightmost ia -inputs entirely. To deliver all jb s to 

the rightmost vertices, we have to pump them through the graph in a direction 
determined by vector 1)(1,  . To do it, additional arcs jx ’s for propagation of 

jb ’s digits have to be added to DG. Vertex operations are to be slightly modified 

to provide propagation of these digits: each non-starred vertex just transmits its x-
input data to an x-output, while when arriving at the rightmost vertices, these 
data are “reflected” and propagated to the left as if they were ordinary ia ’s 

input data. It is known that the output value ms 2< . Hence, we need at most 
1M  rows for the “reflected” factor and an additional row for the extension 

with an extra zero digit. Using standard notation, the vertex operations for M-
squaring can be specified in terms of inputs/outputs as follows: 

,:=2 ininininininoutout cmubascs   

,:=,:= inoutinout xxaa  (7) 

,:=,:=,:= inoutinoutinout mmuubb  

for plain vertices, and for starred vertices the operation is: 
,)(:= inininin wbxsu   

,:=2 ininininoutout mubxscs   (8) 

),,,(:= 2 inininininout mubxsmajc   

.:=,:=,:=,:= inoutinoutinoutout mmbbxauu  
 

DG for an exponentiation as a whole is constructed as a composition of 
graphs for M-multiplication and M-squaring by joining outputs of one graph 
with corresponding inputs of the consecutive graph. There are at most k2  
graphs altogether, and the precise number of required graphs for M-
multiplication and M-squaring and the order in which they occur in the 
composition is fully determined only by the binary representation of n. The 
vertices of the resulting graph constitute a rectangular domain 

1}02),(20|),({=2  MjMkijivV , where  nk log= 2 . 
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The next stage of the design is a space-time mapping of domain 2V  onto a 

one-dimensional domain of processing elements (PE). Spatial mapping is 
determined by a linear operator with matrix 0)(1=P , which maps an 

indefinitely long composition of the cohered DGs onto a linear processor array 
with 1M  processing elements: each column of vertices is mapped onto one 
PE. Hence, each PE has to be able to operate in two modes. To control the 
operation modes, a sequence of one-bit control signals   is fed into the 
rightmost PE and propagated through the array. If 0=  the PE implements an 
operation for M-multiplication, if 1= , for M-squaring. The order in which 
control signals are input is determined by the binary representation of n . A 
timing function that provides a correct order of operations is jivt 2=)( . The 

total running time is thus at most  nMn log81)log(4 22  time units. 
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Аннотация: в статье дана краткая характеристика этапов замены ручного 
труда машинным в отраслях агропромышленного комплекса, приведены 
соотношения для расчета коэффициентов механизации работ и труда. 
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