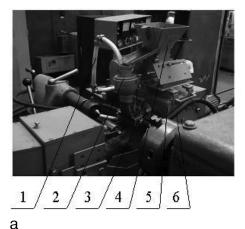
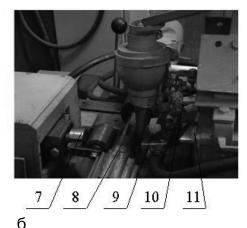
УДК 621.791.92: 621.81

ПОВЫШЕНИЕ ИЗНОСОСТОЙКОСТИ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ АВТОТРАКТОРНОЙ И СЕЛЬСКОХОЗЯЙСТВЕННОЙ ТЕХНИКИ УПРОЧНЕНИЕМ В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

Л.М. Акулович, д-р техн.наук, профессор В.П. Миклуш, канд.техн.наук, профессор А.В. Миранович, канд.техн.наук (Учреждение образования «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь, (8017) 267-17-84, е-mail: dekanatfts@yandex.ru, miron23@tut.by) В.С. Герасимов, зав. лабораторией ФГБНУ ГОСНИТИ (г. Москва, e-mail:rosagroserv@list.ru)

Аннотация. В статье рассматриваются вопросы нанесения износостойких покрытий наметаллические поверхности деталей автотракторной и сельскохозяйственной техники сиспользованием энергий электрического и магнитного полей.


Ключевые слова: электромагнитная наплавка, электромагнитная система, композиционный ферромагнитный порошок, покрытие, износостойкость.


Одной из основных причин выхода из строя деталей автотракторной и сельскохозяйственной техники является износ их поверхностей до 0,6 мм, причем около 50% крупногабаритных деталей отбраковывают из-за износа их поверхностей до 0,1 мм (например, валы двигателей, коробок передач, задних мостов энергонасыщенных тракторов и грузовых автомобилей) [1]. Изношенные поверхности большинства таких деталей могут быть восстановлены применением современных технологий, к числу которых относятся способы упрочнения и восстановления, основанные на использовании концентрированных потоков электрической и магнитной энергий. К их числу относится и электромагнитная наплавка (ЭМН) композиционными ферромагнитными порошками (ФМП), обладающая такими достоинствами, как отсутствие специальной предварительной подготовки поверхности детали, незначительная зона термического влияния и высокая прочность сцепления покрытия с основным материалом детали. Однако существенным недостатком ЭМН является неравномерность и неоднородность покрытия по толщине, что не позволяет использовать ЭМН для восстановления геометрических размеров поверхностей, износ которых составляет более 0,15 мм [2].

Для устранения вышеперечисленных недостатков ранее были проведены теоретические и экспериментальные исследования, направленные на интенсификацию процесса упрочнения посредством разработки специальной электромагнитной системы (ЭМС) на основе постоянных магнитов (ПМ), обеспечивающей синхронизацию воздействий электрическими разрядами и внешним электромагнитным полем (ЭМП) на частицы ФМП и упрочняемую поверхность в рабочей зоне устройств ЭМН [3, 4]. Определено, что наибольшую стабильность процесса ЭМН обеспечивают ПМ из сплава ЮНДК24Т ГОСТ 17809-72 с величиной магнитной индукции В=0,7 Тл при рабочем зазоре 2,0 мм, ширине полюсного наконечника 5,7 мм и угле охвата α=12° [4, 5]. В качестве ИТТ принят инверторный источник питания модели Invertec V270 Т, обеспечивающий требуемую частоту, скважность

пульсаций технологического тока и минимальную нестабильность процесса ЭМН [5].

На основе проведенных исследований процесса ЭМН разработана и изготовлена установка модели УНП-1 (рис. 1), которая обеспечивает стабилизированные во времени технологические параметры режима нанесения износостойких покрытий [3, 5].

1 – трубопровод для подачи рабочей жидкости; 2 – смеситель; 3 – полюсный наконечник; 4 – бункер-дозатор; 5 – электромагнитный питатель; 6 – трубопровод для подачи охлаждающей жидкости наконечника; 7 – накатное устройство; 8 – деталь; 9 – сопло; 10 – трубопровод для отвода охлаждающей жидкости; 11 – сердечник магнита постоянного Рис. 1. Фотографии установки ЭМН модели УНП 1

Известно [4, 6, 7], что на структуру наплавленного металла, соответственно и на эксплуатационные свойства поверхностей, оказывает влияние не только химический и фазовый составы материалов ФМП, но и технологические параметры ЭМН покрытий. Так, при изменении режима ЭМН меняются условия формирования покрытий, геометрические характеристики и химическая неоднородность наплавленного материала.

Следует отметить, что процесс изнашивания различных материалов покрытий, полученных ЭМН в постоянном магнитном поле, в условиях трения скольжения со смазочным материалом и смазочным материалом, загрязненным частицами абразива не исследован. В связи с этим были проведены экспериментальные исследования по выявлению влияния стабилизированных технологических параметров ЭМН на износостойкость покрытий из порошков различных составов.

Покрытия из двухкомпонентного легированного порошка на основе железа Fe-2%V (ГОСТ 9849-86) и высокоуглеродистого порошкового сплава ФБХ-6-2 (ГОСТ 11546-75) наносили на цилиндрические нормализованные образцы из стали 45 ГОСТ 1050-88 с наружным диаметром 40 мм и высотой 12 мм на установке модели УНП-1. Режим наплавки варьировался в зависимости от материала, используемого ФМП в следующих пределах: плотность разрядного тока і – 1,9 А/мм2; подача ФМП q – от 0,32 до 0,39 г/сЧ

Таблица 1 Триботехнические характеристики покрытий, полученных ЭМН*

	Параметр					
Материал	Интенсивность изнашивания при трении скольжения. мкм/км		Момент трения скольжения М _{тр} , НЧ		Коэффициент трения скольже- ния, f	
	с маслом	ć мас- лом и части- цами абрази- ва	с маслом	с мас- лом и части- цами абрази- ва	с маслом	с мас- лом и части- цами абрази- ва
Fe-2%V	2,1	3,2	0,72	0,84	0,10	0,12
ФБХ-6-2	1,7	2,4	0,65	0,78	0,09	0,11
Сталь 45 (эталон)	3,2	4,7	0,71	0,84	0,10	0,12

Условие проведения триботехнических испытаний: P=2,5 МПа; n=750 мин-1; T=293 К.

Таблица 2 Интенсивность изнашивания контртела

Материал	Интенсивность изнашивания контртела, мкм/км				
	с маслом	с маслом и частицами абразива			
Fe-2%V	2,5	3,5			
ФБХ-6-2	2,8	3,7			
Сталь 45 (эталон)	3,5	4,8			

Установлено, что в различных условиях изнашивания при трении скольжения наибольшей износостойкостью обладают покрытия из ферромагнитного порошка ФБХ-6-2 (рис. 2). Так, износостойкость этих покрытий выше в 1,7-1,9 раза износостойкости эталона. Износостойкость покрытий из порошка Fe-2%V, по сравнению с эталоном, больше в 1,3-1,5 раза. Таким образом, в порядке убывания износостойкости покрытий последние можно расположить в следующей последовательности: ФБХ-6-2→Fe-2%V→сталь 45 (эталон).

Выявлено, что пара трения «покрытие из порошка Fe-2%V-чугун XTB» имеет большие момент и коэффициент трения скольжения со смазкой и смазкой, загрязненной частицами абразива. Следовательно, для пары трения, работающей при трении скольжения, следует использовать покрытия из ферромагнитного порошка ФБХ-6-2, а для неподвижных соединений лучшими будут покрытия из порошка Fe-2%V.

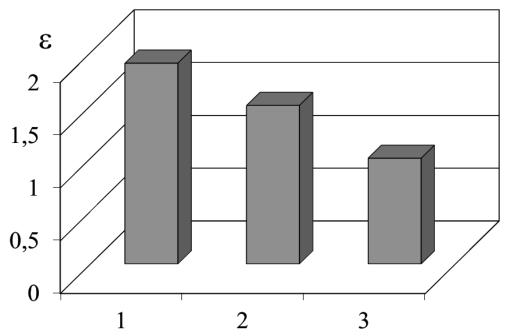


Рис. 2. Диаграммы относительной износостойкости є покрытий из порошков ФБХ-6-2 (1), Fe-2%V (2) и эталона (3) и эталона в условиях трения скольжения со смазкой, загрязненной частицами абразива

Анализ результатов испытаний износостойкости покрытий показал, что разброс экспериментальных данных не превышает 7 %.

На основании полученных результатов исследований износостойкости покрытий, полученных ЭМН на установке модели УНП-1, можно сделать следующие выводы:

Электромагнитная система установки модели УНП-1 на основе постоянных магнитов стабилизирует технологические параметры процесса (силу технологического тока и магнитную индукцию в рабочей зоне), обеспечивает равномерность и однородность покрытий по толщине.

Установлено, что в различных условиях изнашивания при трении скольжения наибольшей износостойкостью обладают покрытия из ферромагнитного порошка ФБХ 6-2. В порядке убывания износостойкости покрытий последние можно расположить в следующей последовательности: ФБХ-6-2→→Fe-2%V→сталь 45 (эталон).

Литература

Миклуш В.П., Сайганов А.С. Организация технического сервиса в агропромышленном комплексе. – Минск: ИВЦ Минфина, 2014. – 607 с.

Акулович Л.М. Термомеханическое упрочнение деталей в электромагнитном поле. -Акулович Л.М., Миранович А.В. Повышение качества покрытий при электромагнитной наплавке в постоянном магнитном поле // Вестник ПГУ. Серия В. Промышленность. Прикладные науки. – 2008. – № 8. – С. 58 – 65.

Акулович Л.М., Миранович А.В. Влияние параметров технологического тока при электромагнитной наплавке на качество покрытий // Современные проблемы освоения новой техники, технологий, организации технического сервиса в АПК: материалы Междунар. науч.- практ. конф. в 2 ч. Ч.1 / Под общей ред. И. Н. Шило, Н. А. Лабушева. – Минск: БГАТУ, 2014. – С. 301 – 307.

Акулович Л.М., Миранович А.В., Ворошухо О.Н. Использование трансформаторных и инверторных источников технологического тока при электромагнитной наплавке // Энерго- и материалосберегающие экологически чистые технологии: тез. докл. IX Междунар. науч.-техн. конф. / Под ред. А. И. Свириденка и В. А. Бородули. – Гродно: ГрГУ, 2013. – С. 115 – 116.

Чичинадзе А.В. и др. Основы трибологии (трение, износ, смазка): учебник для техн. вузов / под общ. ред. А.В. Чичинадзе. – 2-е изд. – М.: Машиностроение, 2001. – 664 с.

Икрамов, У.А. Расчетные методы оценки абразивного износа / У.А. Икрамов. – М.: Машиностроение, 1987. – 288 с.

THE INCREASE OF WEAR RESISTANCE OF SURFACES OF DETAILS OF AUTOMOTIVE AND AGRICULTURAL EQUIPMENT HARDENING IN ELECTROMAGNETIC FIELD

L. Akulovich, V. Miklush, A. Miranovich, V. Gerasimov

Annotation. The article deals with the issues of wear resistant coatings on metalsurfaces of parts of automotive and agricultural machinery using energy of electric and magnetic fields.

Keywords: electromagnetic fusion, electromagnetic system, composite ferromagnetic powder, a coating, wear resistance.

References

- 1. Miklos V.P., Sayganov A.S. Organization of technical service in agroindustrial complex. Minsk: ITC Finance, 2014. 607 p.
- 2. The Presidium of L.M. Thermomechanical hardening of parts in the electromagnetic field. Polotsk: PSU, 1999. 240 p.
- 3. The Presidium of L. M., A. V. Miranovich improving the quality of coatings at electromagnetic surfacing in a constant magnetic field // Bulletin of PSU. Series V. Industry. Applied science. -2008. No. 8. S. 58 65.
- 4. The Presidium of L. M., Miranovich A. V. Influence of parameters of technological current at electromagnetic surfacing on the quality of coatings // Modern problems of development of new technology, technology, organization of technical service in AIC: materials of Intern. scientific.- practical. Conf. in 2 hours part 1 / Under the General editorship of I. N. Shilo, N. A. Lebesheva. Minsk: the Belarusian state agrotechnical University, 2014.– S. 301 307.
- 5. The Presidium Of L. M., A. V. Miranovich, Varosha O. N. The use of transformer and inverter power sources technology current at electromagnetic surfacing // Energy and resource-saving ecologically clean technologies: proc. Dokl. IX Intern. scientific.-tech. Conf. Ed. by A. I. Sviridenko and V. A. Boroduli. Grodno: Grsu, 2013. S. 115 116.
- 6. Chichinadze A.V., fundamentals of tribology (friction, wear, lubrication): textbook for technical. high schools / under the General editorship of A.V. Chichinadze. 2nd ed. M.: machinery engineering, 2001. 664 p.
- 7. Ikramov, W.A., design methods of evaluation of abrasion / U.A. Ikramov. M.: Mashinostroenie, 1987. 288 p.