ОБОСНОВАНИЕ УГЛОВ СКОЛЬЖЕНИЯ ПОЧВЫ ПО ПОВЕРХНОСТИ СТУПЕНЧАТОГО ОТВАЛА

В. П. Чеботарев, д-р техн. наук, профессор Д. А. Яновский, ассистент Д. Н. Бондаренко, ст. преподаватель А. А. Зенов, ст. преподаватель Е. Ю. Костюк, студент

УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь

Аннотация. Представлена конструкция плуга с переменным углом скольжения пласта по поверхности отвала и обоснованы углы установки ступеней.

Вспашка — основной прием механической обработки почвы. При вспашке подрезаются и заделываются вглубь почвы сорняки и их семена, удобрения, пожнивные остатки. Отвальная вспашка — эффективный способ борьбы с вредителями и болезнями растений. Поэтому ее можно рассматривать как основу экологически безопасных технологий, позволяющих существенно сократить применение химических средств защиты растений и удобрений.

Исследованиями зарубежных и отечественных ученых установлено, что плотность и крошение почвы оказывают существенное влияние на урожайность культур, возделываемых в сельском хозяйстве. Существенное влияние на крошение почвы оказывают параметры лемешноотвальной поверхности (ЛОП) плуга. В качестве таких параметров выступают ширина захвата, углы постановки лемеха ко дну и стенке борозды, величина загиба отвала [1].

Также существенным критерием при разработке почвообрабатывающих орудий является энергоемкость. Энергия, непосредственно затраченная на выполнение процесса вспашки, распределяется следующим образом: на деформацию почвы 16 %, на поднятие и ускорение почвенного пласта 12 %, на преодоление сил трения 60 %, на резание почвы 12 % [2]. Исходя из распределения сопротивлений, видно, что наибольшее количество энергии затрачивается на преодоление сил трения лемешно-отвальной поверхности о почву, поэтому решению этой проблемы уделяется очень большое внимание.

С целью улучшения крошения и снижения тягового сопротивления при вспашке предлагается конструкция корпуса плуга, состоящая из стойки I, лемеха 2, отвала 3 со ступенчатой поверхностью, состоящей из четырех вертикально расположенных ступеней и трех подступенков 4, расположенных под углом относительно вертикальных плоскостей, проведенных перпендикулярно поверхностям ступеней (рис. 1).

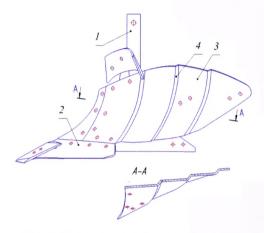


Рис. 1. Схема модернезируемого корпуса плуга: I — стойка; 2 — лемех; 3 — отвал; 4 — подступенок

Работает корпус плуга следующим образом. При проведении основной обработки почвы лемех 2 отрезает пласт от дна борозды и подает на отвал 3 со ступенчатой поверхностью. При скольжении пласта по ступенчатой отвальной поверхности происходит изменение скорости передвижения пласта по поверхности отвала. Когда пласт передвигается по поверхности ступени, скорость передвижения меньше (поверхность ступени будет находиться с большим углом атаки), чем при движении по поверхности подступенка 4 (происходит движение пласта по поверхности с меньшим углом атаки), затем пласт поступает опять на поверхность ступени с большим углом атаки, что приводит к уменьшению скорости передвижения и т. д. Изменение скорости передвижения пласта по поверхности ступенчатого отвала приводит то к сжатию пласта (при перемещении пласта по поверхности ступени), то к растяжению пласта (при перемещении пласта по поверхности подступенка). Вследствие сжатия-растяжения почвенного пласта происхо-

дит лучшее его крошение (создается дополнительная сеть трещин в сечении пласта), также при изменении скорости передвижения пласта изменяется сила крошащего воздействия на пласт со стороны ступенчатой отвальной поверхности из-за изменения уровня поверхности ступени отвала, что также приводит к лучшему крошению почвенного пласта. Достигается снижение тягового сопротивления благодаря периодическому снижению угла скольжения, а также уменьшения давления пласта на отвал вследствие его крошения.

Рассмотрим элементы процесса разрушения на примере двугранного клина (рис. 2) с переменным углом.

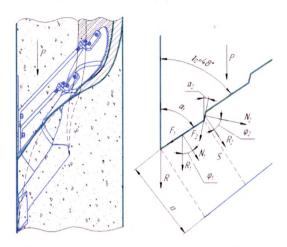


Рис. 2. Процесс обработки почвы корпусом со ступенчатым отвалом: a – оборот пласта корпусом со ступенчатым отвалом; δ – расчетная схема движения пласта почвы по ступенчатому отвалу плуга

При движении в почве отвал взаимодействует с ней по нормали, отклоненной на угол трения почвы о поверхность отвала. В этом направлении отвал сдвигает почву по плоскости площадью

$$S = \frac{ab}{\cos(\alpha + \varphi)},\tag{1}$$

где S – площадь разрушения почвы, M^2 ;

а – глубина вспашки, м. Принимаем 0,22 м;

b — ширина захвата плужного корпуса, м. Принимаем ширину захвата плуга ППО-8-40, которая составляет 0,4 м;

 α – угол движения пласта по отвалу, град;

ф – угол трения при скольжении почвы по отвалу, град.

При этом сила разрушения почвенного пласта R должна быть равна

$$R = \frac{\mu ab}{\cos(\alpha + \varphi)},\tag{2}$$

где μ – коэффициент сцепления частиц почвы, H/M^2 . $\mu = 400~H/M^2$ [3].

Движение пласта почвы по поверхности отвала без разрушения происходит до тех пор, пока на нем не сформируется пласт толщиной Δ . Только тогда может проявляться действие силы R. Толщину пласта определим из условия

$$R = \Delta b \sigma$$
, (3)

где σ – предельное нормальное напряжение на пласте.

Решив совместно уравнения (2) и (3), получим

$$\Delta = \frac{a\tau}{\sigma\cos(\alpha + \varphi)} = \frac{\mu a}{\sigma\cos(\alpha + \varphi)}.$$
 (4)

Подставив в уравнение (3) значение Δ , получим

$$R = \frac{\mu ab}{\cos(\alpha + \varphi)}$$
, или $R = \frac{\tau ab}{\cos(\alpha + \varphi)}$. (5)

Сила тягового сопротивления, приходящаяся на отвал P, определяется полученной силой разрушения R и силой трения при движении почвы по отвалу в момент разрушения пласта P без учета силы, затрачиваемой на движение сформированного пласта почвы по отвалу

$$P = R\cos(90 - (\alpha + \varphi)) + F\cos\alpha,$$
 (6)

$$F = N \operatorname{tg} \varphi$$
,

где N — сила нормального давления на поверхности при разрушении пласта почвы, H.

$$N = \frac{R}{\cos \varphi}$$
, или $N = \frac{\mu ab}{\cos \varphi \cos(\alpha + \varphi)}$.

После подстановки P в уравнение (6) получим

$$P = R \left(\sin(\alpha + \varphi) + \frac{\cos \alpha t g \varphi}{\cos \varphi} \right). \tag{7}$$

Определим силу тягового сопротивления, приходящуюся на отвал P, и силу разрушения R при движении почвы по поверхности отвала. Результаты расчетов представлены на рис. 3.

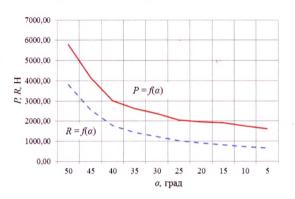


Рис. 3. Тяговое сопротивление P и сила разрушения пласта почвы R в зависимости от угла движения пласта по отвалу α

Исходя из графика, представленного на рис. 3, оптимальным углом установки ступеней является $\alpha_1 = 50^\circ$, которым соответствуют тяговое сопротивление на отвале $P_1 = 5800~{\rm H}$ и сила разрушения пласта $R_1 = 3830~{\rm H}$. С целью улучшения крошения и снижения тягового сопротивления угол установки подступенков принимаем $\alpha_2 = 10^\circ$, которым соответствуют тяговое сопротивление на отвале $P_1 = 1750~{\rm H}$ и сила разрушения пласта $R_1 = 730~{\rm H}$.

ЛИТЕРАТУРА

- 1. Бледных, В. В. Крошение почвы корпусом отвального плуга / В. В. Бледных, П. Г. Свечников // Вестн. Челяб. гос. агроинж. акад. 2013. Т. 65. С. 68–73.
- 2. Халанский, В. М. Экскурсия за плугом / В. М. Халанский. Москва: Колос, 1974. С. 207.
- 3. Бледных, В. В. Расчетная схема технологического процесса крошения почвы почвообрабатывающими рабочими органами / В. В. Бледных, П. Г. Свечников, И. П. Трояновская // Тракторы и сельхозмашины. 2016. № 3. С. 22—26.