УДК [631.3+629.114]

ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ МОБИЛЬНЫХ МАШИН С ТАНДЕМНЫМ МОСТОМ

А.И. Бобровник¹, д.т.н., профессор, В.Г. Невярович¹, студент, Т.А. Варфоломеева², С.В. Занемонский², В.О. Рацкевич², студент

¹ Белорусский национальный технический университет, ²УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Ввеление

С появлением энергонасыщенных многоосных мобильных машин, интерес к изменениям свойств грунтов под действием нагрузки вырос. В многоосных мобильных машинах для снижения нагрузки на грунт широко применяются тандемные мосты. Применяют мобильные машины с тандемным мостом: в лесном хозяйстве, сельском хозяйстве, при добыче полезных ископаемых, в тяжелых внедорожниках и др. Для эксплуатации сельскохозяйственных машин в тяжелых условиях используют планетарные управляемые мосты, в лесном хозяйстве - для полного контакта с почвой и максимальной стабильности движения в самых сложных условиях применяют планетарные, портальные тандемные мосты и т. д. Для повышения технического уровня в приводах мобильных машин используют тандемный мост фирмы NAF. Однако установка таких мостов на мобильные машины имеет свои особенности. Анализу режима работы тандемного моста мобильной машины посвящена настоящая статья.

Основная часть

Уже на протяжение сорока лет компания Naf, которая является лидером по производству тандемных мостов, не перестаёт радовать своими разработками и техническими ноу-хау. Буквально за несколько лет, компания Naf завоевала славу, благодаря своим тандемным мостам и прочей высококлассной продукцией. Лучшие тандемные мосты пользуются огромным спросом у производителей лесозаготовочных и строительных машин. Компания является

единственным в мире поставщиком полного спектра подобных мостов. В каталоге компании присутствуют тандемные мосты, грузоподъёмность которых достигает пятидесяти тонн. Тандемные мосты обладают независимой подвеской, что обеспечивает наилучшую проходимость спецтехники по пересечённой местности. Независимая подвеска гарантирует оптимальный вариант контакта с опорной поверхностью. Новейшая модель компании, выпущенная в этом направлении это тандемный мост для строительной спецтехники способный выдерживать нагрузку до 46 тонн при скорости 58 км/ч. Управляемые мосты имеют центральный привод, что позволяет обеспечить оптимальный вес машины. Подобный мост контролируется при помощи гидравлики и системы регулировки. При всём этом необходим лишь один центральный двигатель. Также стоит отметить, что сила тяги с центральным приводом в два раза выше по сравнению с обычной системой. Управляемые мосты обеспечены системой регулировки ширины колеи. При движении мобильных машин на различных агрофонах происходит перераспределение нагрузок между осями моста, которое зависит от параметров транспортного средства а также от условий и характера его движения [1]. Указанное перераспределение происходит как в продольной плоскости между осями мобильной машины, так и в поперечной плоскости между колесами [2. с.69]. Конструктивные параметры машины также оказывают влияние на перераспределение нагрузок между колесами. Чем короче продольная база машины и чем выше у нее расположен центр тяжести, тем при равных внешних условиях резче происходит перераспределение [3. с.76]. Для обеспечения проходимости и улучшения тягово-сцепных свойств необходимо мобильные машины оборудовать устройством для перемещения его центра тяжести в оптимальное положение. Рассмотрим особенности конструкции тандемного моста мобильной машины фирмы NAF (рисунок). Серийное производство мостов начато в феврале 2007. В этой модели имеется гидравлическая зубчатая блокировка дифференциала "No Spin". Дифференциал передает крутящий момент зубчатым колесам, расположенным в тандемных рукавах, которые с внутренней стороны крепятся с помощью поворотного круга. Тандемные рукава приводят через цилиндрические зубчатые колеса четыре планетарные механизмы ведущих колес, расположены снаружи мобильной машины.

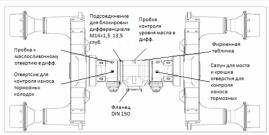


Рисунок – Тандемный мост

Мосты компании NAF разработаны и созданы на основе многолетнего опыта и знаний о потребностях рабочих машин. Бесперебойное функционирование и постоянное рабочее состояние возможны только тогда, когда за мостами хорошо ухаживают, с ними бережно обращаются и постоянно проводят техническое обслуживание. Нагрузка, приходящаяся на один мост - 20 тонн, а на одно колесо-5 тонн. Максимальная касательная сила тяги, развиваемая колесом по сцеплению

$$P_{\text{W}} = \psi G_{\text{CII}} = 0.8x5,0=4.0 \text{ T.}$$
 (1)

Момент, развиваемый колесом по сцеплению при радиусе колеса $1.0 \ \mathrm{M}$

$$M_{\psi} = P_{\psi} r_{\kappa} = 4.0 \times 1.0 = 4.0 \text{ TM}.$$
 (2)

Далее определим моменты в планетарной передаче. В эпициклическом планетарном ряду момент M_c на солнечной шестерне, на водиле $M_{\scriptscriptstyle B}$ и на эпицикле $M_{\scriptscriptstyle 9}$ связаны соотношениями

$$M_{B}=(1+k)M_{c}; M_{9}=kM_{c}; M_{B}=(1+k)M_{9}/k,$$
 (3)

где k-характеристика планетарного ряда (1,5 <k< 4,0) [4, стр.144.]. Совпадающие по направлению моменты на солнечной шестерни и на эпицикле направлены против момента водила и весь трехзвенный дифференциальный механизм уравновешен.

Момент на эпициклической шестерне, воспринимающей реактивный момент, выразим через момент на водиле, который определяется из условия

$$M_{3} = M_{B} k/(1+k).$$
 (4)

Принимаем ориентировочно k=4,66. Тогда M_3 =4000X4,66/(1+4,66)= =3,26 тм. На двух планетарных механизмах одного борта машины

сумма моментов составит 6,52 тм., на четырех колесах всего моста 13,94 тм. При расстоянии между колесами 1,5 м неравномерность догрузки колес за счет реактивного моста составит: 6,52:1,5=4,3 т., то есть изменение сил в динамике на колесо будет от =6,1 до - 3,9 т. При расчете не учитывался ведущий момент, приложенный на входе редуктора. Известно, что расчет ведется на максимальные усилия, возникающие в полюсах зацепления шестерен, а также от дополнительных усилий от тепловых деформаций деталей. Крепление рассчитывается по внешним моментам, нагружающих механизм в целом, а также по инерционным усилиям. Методика расчета изложена в работе [4, стр.168]. Для уравновешивания моста путем уменьшения влияния реактивной силы на тандемный рукав следует оптимизировать схему привода сочетанием цилиндрических и планетарных передач. Если реактивные моменты эпицикла и конечной передачи привода колес одного тандемного рукава будут направлены в разные стороны, то разность крутящих моментов составит 4,00-3,26=0,74 тм. Результирующий момент на тандемный рукав составит 1,06-0,74=0,32 тм. На одно колесо будет действует реактивная сила 54 кг.

Заключение

Для повышения технического уровня в приводах мобильных машин применяют тандемный мост фирмы NAF. Однако установка такого моста имеет свои особенности. При движении мобильной машины происходит перераспределение нагрузок между осями ходовой системы из-за действия реактивного момента, доля которого для мобильных машин составлять до 10-25 % от полезной нагрузки. С учетом реактивного момент для тандемного моста фирмы NAF мобильной машины определено перераспределение вертикальной нагрузки по осям моста, составляющее при изменении ведущего момента от 5 до 7,5 т., то есть 33%. Для уравновешивания моста и уменьшения влияния реактивной силы на тандемный рукав следует направить реактивные моменты в тандемном рукаве в разные стороны.

Литература

- 1. Тракторы. Проектирование, конструирование и расчет. Москва, Машиностроение, под редакцией И.П. Ксеневича, 1991 543с.
- 2. Зимелев Т.В. Теория автомобиля. / Т.В. Зимлев // М. Машиностоение, $1957.-155\ c.$

- 3. Гуськов В.В. Тракторы. В.В. Гуськов // Минск, Вышэйшая школа, ч.3 1977. 382 с.
- 3. В.М. Шарипов. Конструирование и расчет тракторов. Москва, «Машиностроение», 2004. 590 с.
- 4. Бронетанковая техника. Конструкция и расчет танков и БМП. Учебник. Москва. Военное издательство, 1984. 376 с.

УДК 621.43

ИНТЕРАКТИВНОЕ ВЗАИМОДЕЙСТВИЕ С СЕРВЕРАМИ ПОГОДЫ И КАРТОГРАФИЧЕСКОЙ ИНФОРМАЦИЕЙ КАК ИНСТРУМЕНТ КОНТРОЛЯ ИСПЫТАНИЙ РАДИАТОРОВ И ЖИДКОСТНО-МАСЛЯНЫХ ТЕПЛООБМЕННИКОВ

В.Е. Тарасенко, к.т.н., доцент, А.А. Жешко, к.т.н., доцент УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Введение

Эксплуатационные режимы дизеля, климатические условия, параметры установки и компоновки компонентов системы охлаждения (СО) оказывают определяющее влияние на эффективность работы самоходной сельскохозяйственной техники. Заключительным этапом испытаний СО являются испытания полнокомплектной самоходной сельскохозяйственной машины в рядовой эксплуатации при выполнении наиболее энергоемких работ [1]. Данная статья имеет целью дополнить существующую методику проверки эффективности работы теплонапряженных систем самоходной сельскохозяйственной техники, открыть возможность определения предельной температуры окружающей среды (ОС) по охлаждающей жидкости (ОЖ) и маслу путем осуществления интерактивного взаимодействия с серверами погоды и картографической информацией.

Основная часть

В рамках проводимой научно-исследовательской работы на кафедре «Технологии и организация технического сервиса» разработано локальное web-приложение, позволяющее осуществлять расчет допустимой температуры ОС, при которой возможна эксплуатация