УДК 631.365

В.П. Чеботарев

(РУП «НПЦ НАН Беларуси по механизации сельского хозяйства», г. Минск, Республика Беларусь)

ТЕОРЕТИЧЕСКИЙ РАСЧЕТ ПАРАМЕТРОВ ШАХТЫ И ВЫГРУЗНОГО УСТРОЙСТВА ШАХТНОЙ ЗЕРНОСУШИЛКИ

Введение

Теоретические исследования и практическая эксплуатация шахтных зерносушилок показывают, что параметры шахты и производительность ее выгрузного устройства существенным образом влияют на выработку всей зерносушилки [1, 2]. Они являются основными показателями, определяющими ее технический уровень и основные конструктивнотехнологические параметры. Обоснованное теоретическое определение этих параметров в зависимости от условий и обрабатываемой культуры позволяет разработать оптимальную по технико-экономическим показателям конструкцию зерносушилки.

Основная часть

Теоретический расчет параметров зерносушилки проводится на основе теплового и массового балансов высушиваемого зерна, агента сушки и охлаждающего воздуха. Основной задаваемый исходный параметр зерносушилки — производительность в плановых тоннах. В соответствии с требуемой производительностью определяются основные параметры шахтного модуля (сушильной емкости), выгрузного устройства, воздухонагревателя и вентиляторов. Производительность зерносушилки определяется следующей зависимостью:

$$G_{\text{пл.т}} = G_0 K_{\text{W}} K_{\text{K}} K_{\text{H}} / \tau_{\text{c}},$$

где G_0 – вес партии зерна до сушки, m;

 $K_{\rm W}$ — безразмерный коэффициент, определяющийся в зависимости от начальной и конечной влажности зерна;

 $K_{\rm K}$ – безразмерный коэффициент, учитывающий вид высушиваемой культуры;

 К_н – безразмерный коэффициент, учитывающий назначение высушиваемого зерна;

 τ_{c} – время сушки партии зерна, u.

Коэффициенты $K_{\rm W}$, $K_{\rm K}$ и $K_{\rm H}$ определяются на основе экспериментально установленных табличных данных [3, 4].

Выработка зерносушилки по фактическому физическому объему высушенного зерна будет равна:

$$G_0 = \frac{G_{\text{\tiny III.T}}}{\kappa_{\text{\tiny W}} \kappa_{\text{\tiny K}} \kappa_{\text{\tiny H}} \tau_{\text{\tiny c}}}.$$

В процессе сушки влагосодержание зерна и агента сушки изменяется вследствие соответствующего перемещения влаги. Исходя из закона сохранения вещества, в зависимости от количества исходного или высушенного зерна количество испаренной влаги определится согласно выражению:

$$m_{\text{W}_3} = G_0 \frac{w_{30} - w_{3K}}{100 - w_{3K}} = G_K \frac{w_{30} - w_{3K}}{100 - w_{30}},$$

где w_{30} и w_{3K} – влажность зерна соответственно до и после сушки, %.

В процессе сушки испаряемая из зерна влага захватывается агентом сушки, вызывая повышение его влагосодержания. Следовательно, уравнение баланса влаги для сушильного модуля может быть представлено в следующем виде:

$$G_0 \frac{W_{30}}{100} + m_{\text{ac}} \frac{d_0}{1000} = G_0 \frac{W_{3\text{K}}}{100} + m_{\text{ac}} \frac{d_{\text{K}}}{1000},$$

где $m_{\rm ac}$ – масса использованного агента сушки, κz ;

 d_0 и d_{κ} – влагосодержание агента сушки до и после сушки.

Разность величины влаги в зерне до начала и после окончания процесса сушки является производительностью зерносушилки по испаряемой влаге. Тогда она будет определяться согласно следующему выражению:

$$m_{\text{W}_3} = m_{\text{ac}} \frac{d_{\text{K}} - d_0}{10},$$

а фактический физический объем высушенного зерна будет равен:

$$G_0 = \frac{m_{\rm ac}(d_{\rm K} - d_0)}{10(w_{\rm 30} - w_{\rm 3K})}.$$

В свою очередь, расход сухого воздуха будет равен:

$$Q_{\rm L} = \frac{10G_0(w_{30} - w_{3\rm K})}{\rho_{\rm ac}(d_{\rm K} - d_0)\tau_{\rm c}},$$

где $\rho_{\rm ac}$ – плотность агента сушки, $\kappa z/m^3$.

Оптимальные параметры режима сушки, обеспечивающие максимальную производительность зерносушилки, достигаются при минимальных затратах тепла. Уравнение теплового баланса сушильного модуля определяется согласно следующей зависимости:

$$m_{\rm ac}h_0 + Q_{\rm кал} + G_0\,c_3T_{30} = m_{W3}\,c_{\rm B}\,(100-T_{30}) + m_{W3}\,r_0 + m_{\rm ac}\,h_{\rm K} + G_0\,c_3T_{3{\rm K}} + Q_{\rm потери},$$
 (1) где h_0 и $h_{\rm K}$ — удельная энтальпия агента сушки до и после сушки, $\kappa \Pi_{\rm DE}/\kappa c$;

 $c_{\scriptscriptstyle 3}$ и $c_{\scriptscriptstyle B}$ – удельная теплоемкость соответственно зерна и воздуха, $\mathcal{L}\mathcal{H}/(\kappa z\cdot K)$;

 T_{30} и T_{3K} – температура зерна до и после выхода из сушилки, К; r_0 – удельная теплота парообразования, $\mathcal{Д} \mathcal{H}/\mathcal{K}\mathcal{E}$;

 $Q_{\text{потери}}$ – потери тепла при сушке, $\kappa \not\square \mathcal{H}$.

Из выражения (1) определяется величина теплоты, которую должен сообщать воздухонагреватель (калорифер) агенту сушки. Для учета тепловых потерь в окружающую среду на нагрев элементов и механизмов сушилки в выражение вместо $Q_{\text{потери}}$ введен тепловой коэффициент полезного действия зерносушилки η_Q . Тогда теплота, вырабатываемая воздухонагревателем для обеспечения процесса сушки, будет равна:

$$Q_{\text{KAJ}} = [m_{\text{ac}}(h_{\text{K}} - h_0) + G_0 c_3 (T_{3\text{K}} - T_{30}) + m_{\text{W3}} c_{\text{B}} (100 - T_{30}) + m_{\text{W3}} r_0] / (\eta Q).$$

Удельный расход тепла на испарение 1 κz влаги соответственно определится:

$$q_{\mathrm{T}}=Q_{\mathrm{\tiny KBJI}}/m_{W_3}=$$

$$= [m_{\rm ac}(h_{\rm K} - h_0) + G_0 c_3 (T_{\rm 3K} - T_{\rm 30}) + m_{\rm W3} c_{\rm B} (100 - T_{\rm 30}) + m_{\rm W3} r_0] / (\eta Q m_{\rm W3}).$$

С другой стороны, удельный расход тепла может быть определен в зависимости от скорости сушки и параметров агента сушки. При прочих равных условиях производительность зерносушилки обратно пропорциональна необходимому времени сушки и прямо пропорциональна скорости сушки в первом периоде. Таким образом, необходимая теплопроизводительность воздухонагревателя для зерносушилки с учетом удельного расхода тепла $q_{\rm T}$ будет равна:

$$Q_{\text{KAUT}} = G_0 q_T \frac{w_{30} - w_{3K}}{100 - w_{NK}}.$$
 (2)

Кроме того, количество тепла, необходимого для сушки, определяется также согласно выражению:

$$Q_{\text{кал}} = Q_{\text{L}}(h_{\text{ac}} - h_{\text{A}}),$$

где $h_{\rm A}$ – удельная энтальпия воздуха, $\kappa \not\square \varkappa \varepsilon / \kappa \varepsilon$;

 $Q_{\rm L}$ – масса поданного агента сушки, $\kappa \varepsilon$.

У большинства известных зерносушилок температура агента сушки составляет 70...150 °C, а удельный расход тепла — 740...810 ккал/кг испаренной влаги. Поэтому на основании зависимости (11) производительность зерносушилки определяется в первую очередь интенсивностью подвода тепла в зерновую массу. Увеличение объема подводимого тепла может быть осуществлено двумя путями: путем повышения количества подаваемого агента сушки или увеличения продолжительности процесса сушки. Эффективный путь решения данной проблемы — перевод охладительной зоны в сушильную и вынос процесса охлаждения за пределы сушильного модуля. Процесс охлаждения позволяет значительно снизить температурные напряжения в зерне, выровнять температуру высушенной зерновой массы и обеспечить условия длительного хранения зерна. Эффективность охлаждения зерна после сушки может быть оценена коэффициентом, определяемым согласно выражению:

$$\eta_{\text{OXJI}} = \frac{c_{\text{3}} m_{\text{3K}} (T_{\text{3}} - T_{\text{o}})}{c_{\text{ac}} m_{\text{ac}} (T_{\text{ac}} - T_{\text{o}})},$$

где c_{ac} – удельная теплоемкость агента сушки, $\mathcal{Д} \mathcal{ж} / (\kappa z \cdot K)$;

 T_3 – температура зерна, К;

 T_0 – температура наружного воздуха, К;

 $T_{\rm ac}$ – температура агента сушки, К.

Коэффициент эффективности охлаждения высушенного зерна зависит от большого количества различных факторов, однако необходимо обеспечивать в процессе охлаждения следующие условия: температура зерна после охладительной камеры не должна превышать температуру окружающего наружного воздуха более чем на $5...10\,^{\circ}$ С, кроме того, эта температура не должна быть ниже $0\,^{\circ}$ С. Число подводящих и отводящих коробов в шахтном модуле определится на основе требуемой подачи агента сушки:

$$n_{\rm K} = \frac{2Q_L}{(F_{\rm non} - F_{\rm otb})v_{\rm ac}},\tag{3}$$

где $F_{\text{под}}$ и $F_{\text{отв}}$ – площадь сечения подводящего и отводящего коробов, m^2 ; v_{ac} – скорость агента сушки, m/c.

Тогда необходимая вместимость зерносушильного модуля будет равна:

$$E_{\rm c} = \frac{G_0}{\tau_{\rm c} \rho_{\rm un}} + K_{\rm призм} F_{\rm K} l_{\rm K} n_{\rm Kp}, \tag{4}$$

где $K_{\text{призм}}$ – коэффициент, учитывающий объем призм под коробами, которые не заполняются зерном;

 $\rho_{\rm HII}$ – насыпная плотность зерна, $\kappa \epsilon/M^3$;

 $F_{\rm K}$ – площадь сечения короба, M^2 ;

 $l_{\rm K}$ – длина короба, м.

 $n_{\rm Kp}$ – число коробов, um.

Высота сушильного модуля соответственно определится на основе его вместимости:

$$H_{\rm cm} = \frac{E_{\rm c}}{F_{\rm K} l_{\rm K} n_{\rm Kp}}.$$
 (5)

Для обеспечения надежного протекания процесса сушки производительность выгрузного устройства должна быть равна:

$$q_{\text{выгр}} = \frac{G_0}{\tau_c}.$$
 (6)

Вентиляционные системы современных зерносушилок ориентированы на применение высокопроизводительных и экономичных вентиляторов (КПД 0,7...0,8) при сравнительно невысоких удельных давлениях ($500...750\ \Pi a$) и значительных удельных подачах сушильного агента.

Выводы

Для обеспечения высоких технико-экономических показателей при сушке зерна конструкция шахты и выгрузного устройства зерносушилки должна быть рассчитана согласно выражениям (3), (4), (5) и (6). Кроме того, охладительная зона должна быть вынесена за пределы сушильного модуля.

18.08.2014

Литература

- 1. Мальтри, В. Сушильные установки сельскохозяйственного назначения / В. Мальтри, Э. Петке, Б. Шнайдер; сокр. пер. с нем.: В.М. Комиссаров, Ю.Л. Фрегер; под. ред. В.Г. Евдокимова. М.: Машиностроение, 1979. 525 с.
- 2. Шаршунов, В.А. Сушка и хранение зерна: справочное пособие / В.А. Шаршунов, Л.А. Рукшан. Минск: Мисанта, 2010. 587 с.
- Типовые рекомендации по подбору и замене топочных агрегатов зерносушилок в сельскохозяйственных организациях Республики Беларусь / А.Н. Рубаник [и др.]. – Минск, 2004. – 34 с.
- Гормошин, Н.А. Теплообмен в зерновой массе при линейном начальном распределении температуры по толщине слоя / Н.А. Гормошин, В.А. Рыбарук, О.П. Поплевин / М.: Научно-технический бюллетень ВИМ, 1982. – Вып. 51. – С. 31–35.

УДК 62-523:621.316.71

И.Б. Луцык

(Тернопольский национальный педагогический университет им. В. Гнатюка,

г. Тернополь, Украина)

ОСОБЕННОСТИ РЕЖИМОВ РАБОТЫ ЭЛЕКТРОТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА АКТИВНОГО ВЕНТИЛИРОВАНИЯ ЗЕРНА

Ввеление

Одной из основных проблем электротехнологических комплексов зерноскладов является их высокая энергоемкость. По сравнению с научно обоснованными нормами эти затраты выше в среднем на 30 % [1]. Технологическим приемом, который обеспечивает существенное снижение энергии в области зернохранения, является активное вентилирование.

Расчет энергосберегающих режимов вентилирования должен основываться на детальном анализе процесса хранения зерна и факторов, являющихся решающими в определении параметров работы системы. Ведь в зерновой насыпи в период хранения происходит целый комплекс взаимосвязанных явлений, в том числе самосогревание, размножение насекомых-вредителей [2].

Для усовершенствования существующих электротехнологических комплексов активного вентилирования зерноскладов актуальным является установление взаимосвязей между параметрами режимов вентили-