Акулович Л.М., Сергеев Л.Е., Бабич В.Е., Сенчуров Е.В., Шабуня В.В. УО «Белорусский государственный аграрный технический университет», Минск, Беларусь

ФЕРРОАБРАЗИВНЫЙ ПОРОШОК НА ОСНОВЕ БОРИДОВ ДЛЯ МАГНИТНО-АБРАЗИВНОЙ ОБРАБОТКИ

Заключительным этапом многих технологических процессов по изготовлению деталей машин является финишная абразивная обработка. В современном машиностроении наиболее эффективным и перспективным способом финишной абразивной обработки является магнитно-абразивная обработка (МАО), при которой функцию режущего инструмента выполняют частицы ферроабразивного порошка (ФАП), обладающие одновременно магнитными и абразивными свойствами. Эффективность МАО зависит от формы частиц ФАП, их гранулометрического состава, химической активности к обрабатываемому материалу, микротвердости абразивной составляющей, а также от технологичности изготовления и стоимости ФАП. Целью настоящего исследования является создание нового вида ФАП, обладающий высокими магнитными и абразивными свойствами.

Для достижения поставленной цели был разработан состав Φ AП, содержащий в себе следующее соотношение ингредиентов, мас. %: углерод 0,7–3; кремний 0,3–3,6; карбиды бора 0,6–8,0; бориды железа 1–6; железо и примеси – остальное. За прототип был принят состав, химический состав которого указан в табл. 1 [1].

Таблица 1 – Химический состав ФАП

Вид сплава	Уровень со-	Содержание компонентов, мас. %								
	держания компонентов	С	Si	BCx	FeBx	P	Ti	A1	Fe и примеси	
Прототип	средний	1,60	8,75	0,30	0,65	0,30	2,3	1,7	остальн.	
Предлагаемый	йинжин	0,70	0,30	0,60	1,00					
	верхний	3,00	3,60	8,00	6,00					
	средний	2,35	2,95	4,30	3,50					

Сопоставительный анализ с прототипом показывает, что заявляемый сплав отличается от известного содержанием кремния, углерода, боридов железа и не содержит титана, алюминия и фосфора. Выбранные пределы концентрации кремния и углерода обеспечива-

ют высокие прочность, плотность и магнитные свойства сплава. Содержание в выбранных пределах карбидов бора и боридов железа придает сплаву высокие абразивные свойства. При содержании углерода менее 0,7 % затрудняется измельчение сплава и снижаются показатели его абразивных свойств. При содержании углерода более 3 % уменьшаются показатели магнитных свойств из-за повышения количества ледебуритной составляющей. При содержании кремния менее 0,3 % снижается жидкотекучесть сплава и ухудшаются его литейные свойства, при концентрации данного элемента более 3,6 % сплав становится хрупким. При концентрации карбидов бора менее 0,6 % снижаются показатели абразивных свойств порошка, при содержании их более 8 % снижаются показатели магнитных свойств. Аналогичная ситуация наблюдается с боридами железа. При их содержании менее 1 и более 6 % падают, соответственно, показатели абразивных и магнитных свойств материала.

С целью установления режущей способности указанных ФАП были проведены экспериментальные исследования. Экспериментальные исследования производились на экспериментальной установке для МАО модели ЭУ-1. Режимы и параметры процесса приняты следующими: магнитная индукция в рабочем зазоре 1,0 Тл, скорость вращения детали 1,0 м/с, скорость осцилляции полюсных наконечников 0,2 м/с, время обработки 60 с. СОТС – 1,5 %-й водный раствор СинМА-1 (ТУ 38.590117691). Размер частиц ФАП 200–315 мкм. Исходная шероховатость образцов, $Ra_1 = 1,6$ –2,5 мкм. Измерение шероховатости поверхности осуществлялось на профилографе-профилометре мод. 252-Калибр, взвешивание образцов — на весах лабораторных ВЛТ-1 с точностью до 0,001 г, производительность процесса — по величине удельного съема материала при обработке, г/мин. Результаты исследований представлены в табл. 2.

Таблица 2 – Показатели производительности МАО и шероховатости обработанных поверхностей при использовании ФАП

№ ФАП	Латунь Л63		Бронза	Бр АЖ9	Алюминиевый сплав Д 16		
	Ra_2 , мкм	Q, г/мин	Ra_2 , мкм	Q, г/мин	Ra_2 , мкм	Q, г/мин	
1	0,069	0,0169	0,058	0,0280	0,055	0,0150	
2	0,040	0,0470	0,050	0,0230	0,055	0,0460	
3	0,060	0,0264	0,055	0,0095	0,055	0,0140	
4	0,054	0,0350	0,050	0,0180	0,060	0,0345	

В результате исследований предлагаемый состав ФАП по удельному съему металла с обрабатываемой поверхности значительно превосходит прототип и не уступает по параметру *Ra* шероховатости поверхности. Разработанный состав ФАП экономичен и обладает высокими магнитными и абразивными свойствами.

Литература

1. Способ получения магнитно-абразивного порошка: А.с. СССР № 835643 / М.Д. Крымский // Бюл. № 21.— 1981.

Алеутдинов А.Д. Институт неразрушающего контроля «Национального исследовательского Томского политехнического университета», Томск, Россия

ЛОКАЛЬНОЕ ВОССТАНОВЛЕНИЕ СТЕКЛОЭМАЛЕВОГО ПОКРЫТИЯ ВОЗДЕЙСТВИЕМ СФОКУСИРОВАННОГО СВЕТОВОГО ИЗЛУЧЕНИЯ

Стеклоэмалевое покрытие относится к числу наиболее надёжных и универсальных средств защиты металлических изделий от коррозии. К сожалению, как на этапе изготовления, так и в процессе эксплуатации эмалированных изделий возможно появление дефектов стеклоэмалевого покрытия. Обычно на предприятиях дефектные участки перекрывают слоями неметаллических химически стойких композиций — замазок, герметиков, шпаклёвок. Но даже современные варианты такого рода — с использованием накладных элементов и ввёртных устройств, покрытий пластмассами и эластомерами с применением предварительно напряженного армирования химически стойких композиций, постоянных магнитов в качестве крепёжных элементов, не могут обеспечить желательного качества ремонта дефектов — речь идёт только о продлении межремонтного срока службы химоборудования.

Исследования [1] показали, что есть возможность ремонта небольших дефектов стеклоэмалевого покрытия на холодном изделии с помощью лазерного излучения. Некогерентное широкодиапазонное световое излучение с большей площадью и мощностью воздействия для обозначенной задачи представляется более эффективным.

Целью данной работы являлось изучение возможности устранения дефектов стеклоэмалевого покрытия на холодном изделии с ис-