СЕКЦИЯ 2 МОБИЛЬНАЯ ЭНЕРГЕТИКА: ЭНЕРГОСБЕРЕЖЕНИЕ, АВТОМАТИЗАЦИЯ, ЭЛЕКТРОНИКА

УДК 631.372+62-192

ОБЕСПЕЧЕНИЕ ПРИРАБОТКИ ОСНОВНЫХ СОПРЯЖЕНИЙ ГИДРОАГРЕГАТОВ

В.В. Аулин¹, д.т.н., профессор, Т.Н. Замота¹, д.т.н., доцент, А.Е. Чернай¹, аспирант, С.Н. Герук², к.т.н., доцент

¹Центральноукраинский национальный технический университет, г. Кропивницкий, Украина

²Житомирский агротехнический колледж, г. Житомир, Украина

Введение

Детали узлов и агрегатов машин, в основном, изготавливаются из материалов повышенной износостойкости. Это позволяет повысить их долговечность конструктивными методами. При упрочнении деталей повышаются твердость, что создает определенные трудности при приработке неэквидистантных поверхностей. В таких условиях особенно недопустимы отклонения от правильной геометрической формы деталей для прецизионных сопряжений, которые наиболее часто встречаются в гидроагрегатах.

Целью данной работы является обеспечение качественной приработки основных сопряжений гидроагрегатов методом наложения на них переменного электрического тока и подачи электролита.

Основная часть

В качестве исследуемого прецизионного сопряжения исследовали сферическое сопряжение "стальной плунжер—бронзовая пята". Исследования проводили на установке, имитирующей рабочие движения при приработке. В сопряжениях использовали электролит, содержащий в своем составе глицерин и водный раствор 25 % NaNO₃ и 5 % Na₃PO₄ в соотношении 5,25:1 и 3% олеиновой кислоты. Токовые параметры задавали напряжением холостого хода от 2,5 до 6,5 В с шагом в 1В. Электрохимическая и механическая составляющие процессов метода чередовались путем прерывистой подачи электролита. Откликами процесса являлись массовый съем

металла со стального плунжера и бронзовой пяты, изменение овальности и волнистости сферической поверхности плунжера, изменение рабочих напряжения и силы тока.

При приработке износ металла с трущейся поверхности происходит за счет электрохимического съема при разделении поверхностей слоем электролита и механического активирования при контакте поверхностей.

Причем чередование электрохимического травления и механического активирования значительно повышает эффективность процесса и улучшает его качество. Данные износа сферической поверхности плунжера и пяты представлены в таблице 1.

Таблица I — Износ деталей сферического сопряжения при реализации предложенного метода приработки

Напряжение холостого хода, В	2,5	3,5	4,5	5,5	6,5
Износ сферической поверхности плунжера, мг	0,5	0,7	3,2	1,2	0,2
Износ сферической поверхности пяты, мг	0,5	0,8	3,6	2,0	0,3

Исследование закономерности изменения средней овальности наружной сферической поверхности показало, что максимальное улучшение макрогеометрии сферической поверхности плунжера происходило при напряжении $U_{xx}=4,5B$. Проведение процесса при меньших напряжениях затруднено из-за малого съема металла (табл.1), что не способствует исправлению макрогеометрии поверхности. Увеличение напряжения до 5,5B ведет к уменьшению съема металла и степени улучшения овальности и волнистости, а также способствует появлению питтинга. При максимальном из исследуемого диапазона напряжения $U_{xx}=6,5B$ образуется черная пленка травильного шлама (пассивационная пленка), препятствующая как электроэрозионному процессу, так и механическому истиранию поверхностей, съем метала до 1мг.

Результаты проведенных экспериментальных исследований дают возможность утверждать следующее: приработка сферических сопряжений гидроагрегатов позволяет эффективно исправлять их макрогеометрические отклонения. Максимальное уменьшение овальности на 23,5% и волнистости на 12% наблюдается при сле-

дующих режимах приработки: U_p = 4,5B; I_p =2A (U_{xx} =4,5 B); электрохимическая составляющая метода в шесть раз более эффективна по скорости выравнивания макрогеометрического отклонения: за 10 минут приработки удалось уменьшить овальность сферической поверхности плунжера на 7 мкм; использование олеиновой кислоты в качестве добавки к электролиту при приработке повышает порог электроэрозионного процесса до U_p = 5B ($U_{x.x.}$ =5,5 B).

Процессы метода приработки позволяют качественно и управляемо проводить приработку поверхностей деталей после которой можно сформировать необходимый микрорельеф рабочих поверхностей сопряжения деталей узлов и агрегатов машин, тем самым существенно повысится их долговечность.

Повысить долговечность аксиально-плунжерных насосов можно за счет применения электрохимико-механической приработки по режимам, указанным в таблице 2.

Euopoucpecumos (nu npunepe 111111 01)				
Доводимое сопряжение	Значения параметров процесса	Состав электролита		
цилиндрическое сопряжение "плунжер- втулка"	I=4A; n=700 мин ⁻¹ ; t=10 мин; нагрузка – 40 Н	смесь глицерина с 20% водным раствором Na_2CO_3 в соотношении 84:16 и 4% олеиновой кислоты		
сферическое сопряжение "плунжер-пята"	U _{xx} =4B; n=150 мин ⁻¹ ; t=10 мин; нагрузка – 1H;	смесь глицерина с 25% водным раствором NaNO ₃ и 5% раствором Na ₃ PO ₄ в соотношении 5,25:1 и 3% олеиновой кислоты		

Таблица 2 - Режимы метода для приработки основных сопряжений гидроагрегатов (на примере НПА-64)

Заключение

Методом наложения переменного электрического тока на основные сопряжения гидроагрегатов получены улучшение качества их рабочих поверхностей в зависимости от нагрузки и технологических характеристик процессов приработки. Для сферических сопряжений максимальное уменьшение овальности на 23,5% и волнистости на 12% происходило при напряжении 4,5В и силе тока 2А с использованием олеиновой кислоты в качестве добавки к электролиту.