Список использованных источников

- 1. Электронный pecypc: https://soto-lux.ru/raznoe/zashhita-ot-kz-dlya-bloka-pitaniya-na-tiristore-shema-zashhity-istochnika-pitaniya-ot-peregruzki-na-ku202.html.
- 2. Граф Р., Шиитс В. Энциклопедия электронных схем // М.: ДМК-пресс 2010. С. 322.

Матвейчук Н.М., к.ф.-м.н., доцент, Мякинник Е.Е., ст. преподаватель УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь ВЫБОР ТИПА РЕГУЛЯТОРА И ОПРЕДЕЛЕНИЕ ЕГО НАСТРОЕЧНЫХ ПАРАМЕТРОВ ПРИ АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

На основании общих соотношений между параметрами объекта управления и регулятора можно сформулировать рекомендации по выбору типа регулятора и его настроечных параметров:

- для объектов с запаздыванием, инерционная часть которых действительно близка звену первого порядка (а непросто аппроксимирована таким звеном!), целесообразно применять ПИрегулятор.
- для объектов с запаздыванием, инерционная часть которых имеет порядок $n \ge 2$, наилучшим регулятором является ПИД-регулятор.

Эмпирические формулы в таблице 1 обобщают результаты экспериментальных исследований по определению настоечных параметров типовых регуляторов для объектов с запаздыванием (при τ_0 / T_0 = 0...1). Параметры определены путем моделирования систем при ступенчатом изменении задающего воздействия x_3 . Обеспечиваемым показателем качества АСУ является перерегулирование σ (0 или 20 %) на выходе объекта регулирования.

Если необходимо обеспечить колебательный характер переходного процесса в АСУ, при котором амплитуда каждого последующего колебания должна быть в 4 раза меньше амплитуды предыдущего колебания, т. е. степень затухания

$$\Psi = \frac{A_1 - A_3}{A_1} = \frac{A_1 - A_1/4}{A_1} = 0.75,$$

Таблица 1 – Настроечные параметры типовых регуляторов для объектов с запаздыванием

Тип регу-	Настроечные параметры					
лятора	k_Π		k_{H}		$k_{ m f J}$	
	$oldsymbol{a} = 0$	$\sigma = 20\%$	$\sigma = 0$	$\sigma = 20\%$	$\sigma = 0$	$\sigma = 20\%$
П	$\frac{0.3T_o}{k_o\tau_o}$	$\frac{0.7 T_o}{k_o \tau_o}$	0	0	0	0
ПИ	$\frac{0.35 T_o}{k_o \tau_o}$	$\frac{0.6T_o}{k_o\tau_o}$	$\frac{0.29}{k_o \tau_o}$	$\frac{0.6}{k_o \tau_o}$	0	0
пид	$\frac{0.6T_{\scriptscriptstyle O}}{k_{\scriptscriptstyle o}\tau_{\scriptscriptstyle o}}$	$\frac{0.95 T_o}{k_o \tau_o}$	$\frac{0,6}{k_o \tau_o}$	$\frac{0.7}{k_o \tau_o}$	$\frac{0.3T_{o}}{k_{o}}$	$\frac{0.45T_O}{k_o}$

что соответствует нижней границе, при которой качество управления еще признается удовлетворительным, то следует воспользоваться рекомендациями по выбору настроечных параметров регуляторов, приведенных в таблице 2.

Таблица 2 – Настроечные параметры типовых регуляторов для колебательных процессов

Тип	Настроечные параметры				
регулятора	k_Π	$k_{\scriptscriptstyle m H}$	$k_{ m m I}$		
П	$\frac{\tau_o + T_O}{k_o \tau_o}$	0	0		
ПИ	$\frac{\tau_o + T_O}{1,1 k_o \tau_o}$	$\frac{\tau_o + T_O}{3,66 k_o \tau_o^2}$	0		
пид	$\frac{\tau_o + T_O}{0.8 k_o \tau_o}$	$\frac{\tau_o + T_O}{1.6 k_o \tau_o^2}$	$\frac{\tau_o + T_O}{1,6 k_o}$		

Проведенные исследования позволили также сформулировать следующие общие выводы о влиянии настроечных параметров на показатели качества регулирования:

- увеличение коэффициента k_{Π} пропорциональной части регулятора приводит к увеличению перерегулирования σ , времени t_{Π} переходного процесса и уменьшению степени затухания Ψ .
- увеличение коэффициента $k_{\rm H}$ интегральной части регулятора приводит к уменьшению времени $t_{\rm H}$ переходного процесса и увеличению перерегулирования σ .
- увеличение коэффициента $k_{\rm Д}$ дифференциальной части регулятора приводит к уменьшению времени $t_{\rm п}$ переходного процесса и увеличению перерегулирования σ .

Список использованных источников

- 1. Коновалов, Б.М. Теория автоматического управления : учебное пособие для студентов вузов / Б.М. Коновалов, Ю.М. Лебедев. 4-е изд., доп. и перераб. Санкт-Петербург : Лань, 2016. 219 с.
- 2. Кочетков, В.П. Основы теории управления : учебное пособие для студентов вузов / В.П. Кочетков. Ростов-на-Дону : Феникс, 2012.-412~c.
- 3. Власов, К.П. Теория автоматического управления. Основные положения. Примеры расчета: учебное пособие / К.П. Власов. 2-е изд., испр. и доп. Харьков: Гуманитарный центр, 2013. 540 с.

Матвейчук Н.М.¹, к.ф.-м.н., доцент, Цагельник С.Н.²

¹УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь

²УП «Агрокомбинат «Ждановичи», Минск УДАЛЕННОЕ УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПАРАМЕТРАМИ КОГЕНЕРАЦИОННОЙ УСТАНОВКИ НА ТЕПЛИЧНОМ КОМБИНАТЕ

В работе рассматривается установка двух когенерационных модулей в котельной для теплицы площадью 5 Га по выращиванию роз. Преимуществом внедрения КГУ является то, что потреблени-