Литература

1. Кленин Н.И., Сакун В.А. Сельскохозяйственные и мелиоративные машины / Н.И. Кленин, В.А.Сакун. – М.: Колос, 1994. – 751с.

УДК 631.348.4

ШТАНГОВЫЙ ОПРЫСКИВАТЕЛЬ ДЛЯ САДОВ

А.А. Кашкарёв, к.т.н., доцент, В.С. Динабурский, М.П. Дудина Таврический государственный агротехнологический университет г. Мелитополь, Украина

Введение

При реализации стратегической задачи развития экономики государства самая важная роль отводится сельскому хозяйству и вопросам продовольственной безопасности. Решение данной задачи возможно на основе интенсификации производства и его перевооружения, усовершенствования систем управления. Для этого необходимо обеспечить надежный выпуск новых и усовершенствованных структур сельскохозяйственных машин и орудий. Первоочередные задачи заключаются в снижении затрат горюче-смазочных материалов и повышения эффективности работы сельскохозяйственных машин. Энергоемкость сельскохозяйственных операций в значительной мере определяется эксплуатационными свойствами машин и режимами работы машинно-тракторных агрегатов (МТА). Рост энергонасыщенности МТА не дал пропорционального прироста производительности и привел к увеличению затрат топлива на единицу выполненной работы. Повышение производительности МТА, при увеличении мощности тракторного двигателя, производилось через увеличение тягового усилия трактора и агрегатирования широкозахватных сельскохозяйственных машин, или через увеличение рабочей скорости, что сопровождалось ростом удельной затраты топлива. Данные вопросы особенно актуальны в условиях обработки садов, кукурузы и подсолнечника, для обработки которых часто используются средства малой авиации, ротационные опрыскиватели и штанговые опрыскиватели с высокой осью МТА.

Считаем, что целесообразно рассмотреть возможность синтеза штангового опрыскивателя и элементов малой гражданской авиации.

Основная часть

Известны публикации и патенты на полезные модели, которые применяют элементы авиационной техники [1] и малой авиации [2] при опрыскивании сельскохозяйственных культур. На наш вигляд, данное направление имеет возможность быть реализовано в условиях садов, кукурузных полей и подсолнечника. При обработке растений в таких условиях естественно ограничивается ширина захвата [3], а использование малой авиации или беспилотных летательных аппаратов не способствует проникновению питательных растворов в глубину кроны или по поверхности стебля.

В результате обзора теоретических сведений по применению современных гражданских беспилотных летательных аппаратов (коптер), нами проанализированы перспективы их использования в открытом грунте (таблица). На сегодняшний день известны удачные технические и организационные решения использования коптеров, которые связаны с задачами наблюдения, оценки земельных участков и ультрамалообъемного опрыскивания (УМО).

Таблица – SWOT-анализ использования технологии коптеров в условиях открытого грунта

Сильные стороны	Слабые стороны
Экологичность обработки	Малая грузоподъемность
Минимальное влияние	Стоимость материалов и оборудования
человеческого фактора	Стоимость программного обеспечения
Адаптация под системы точного	Емкость и вес батарей
земледелия	Требования к погоде
Минимальное воздействие на	Химическая опасность при УМО
грунт	
Возможности	Угрозы
Круглосуточное использование	Птицы
Модернизация программного	Порывы ветра (стабильность полета)
обеспечения	Вода и пыль
Многоцелевое использование	Ветви деревьев
	Дикие животные
	Вандалы

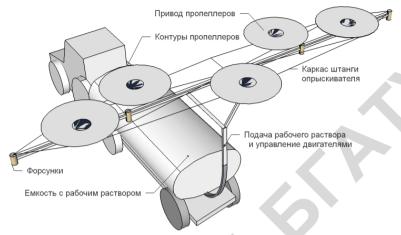


Рисунок – Общий вид и технологические элементы штанги опрыскивателя

В задачах опрыскивания, главными сдерживающими факторами являются показатели стоимости и грузоподъемности. Нами предлагается решение данных недостатков с помощью упрощения технологии коптеров — проводная связь, поднятие только гидравлической арматуры (бак с рабочим раствором транспортируется отдельно и является ведущим), уменьшение количества ступеней свободы коптера (рисунок). Такая конструкция позволит также минимизировать влияние угроз и удешевит стоимость практической реализации

Заключение

Предложенная инновационная технология может быть применена для опрыскивания садов, кукурузы и подсолнечника в открытом грунте.

Проблема, которая решается: повышение эффективности обработки за счет увеличения ширины захвата, повышения скорости обработки и проникновения рабочих растворов в глубину кроны. Достигается с помощью: снижения затрат горюче-смазочных материалов; повышение качества и скорости обработки; возможность обработки в ветреную погоду.

Предложенный концепт (рисунок) позволит минимизировать слабые стороны (таблица) использования коптеров в сельском хозяйстве.

Потенциальные потребители инновационной техники – это частные предприятия и фермерские хозяйства.

Литература

- 1. Пат. №64750 Україна. МПК⁶ А01М 7/00, А01М 9/00, В05В 17/00. Агромашина для обробки рослин або грунту [Текст]/ Городян Василь Іванович. u99126660; заявл. 07.12.1999; опубл. 15.03.2004, бюл. №3.
- 2. Пат. №77504 Україна. МПК⁹ В64D 1/00. Спосіб захисту рослин за допомогою комплексу на базі безпілотного літального апарата [Текст]/ Передерій Юрій Анатолійович. u201214169; заявл. 12.12.2012; опубл. 11.02.2013, бюл. №3.
- 3. Пат. №80950 Україна. МПК¹⁴ А01М 7/00. Обприскувач виноградників та пальметних садів [Текст]/ Сєра Катерина Михайлівна, Догода Олександр Петрович, Драгнєв Семен Васильович. Власник Національний університет біоресурсів і природокористування України u201311588; заявл. 01.10.2013; опубл. 10.04.2014, бюл. №7.

УДК 631.53.02:633.15

ШНЕКОВЫЕ РАБОЧИЕ ОРГАНЫ ДЛЯ ВНЕСЕНИЯ ГРАНУЛИРОВАННЫХ МИНЕРАЛЬНЫХ УДОБРЕНИЙ И СКОРОСТЬ ИХ ИСТЕЧЕНИЯ ИЗ ВЫСЕВАЮЩИХ ОТВЕРСТИЙ

Д.А. Жданко, к.т.н., доцент, Л.Г. Шейко, к.с.-х.н., доцент, А.Ф. Станкевич, аспирант

УО «Белорусский государственный аграрный технический университет», г. Минск, Республики Беларусь

Ввеление

В мировой практике широкое распространение стали получать штанговые распределители в качестве сменных рабочих органов кузовных машин. Из всего многообразия штанговых распределителей минеральных удобрений наибольшее распространение получили шнековые рабочие органы. Качество распределения минеральных удобрений шнековыми распределителями зависит от способа движения материала в кожухе шнека и места положения дозирую-