Секция 2 «МОБИЛЬНАЯ ЭНЕРГЕТИКА В СЕЛЬСКОМ ХОЗЯЙСТВЕ»

УДК 629.36.017

ПРИМЕНЕНИЯ ШИН НИЗКОГО ДАВЛЕНИЯ НА ТРАКТОРАХ

Г.И. Гедроить, канд. техн. наук, доцент, С.В. Занемонский, ст. преподаватель, В.С. Леванюк, студент

УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь zanemanoff@mail.ru

Аннотация: в статье дана оценка влияния параметров ходовых систем тракторов на их эксплуатационные и агроэкологические показатели, предложены решения по их совершенствованию.

Abstract: the article gives an assessment of the influence of the parameters of the running systems of tractors on their operational and agro-ecological indicators, and offers solutions for their improvement.

Ключевые слова: трактор, плотность почвы, шина.

Keywords: tractor, soil density, tire.

Введение. Сельскохозяйственные тракторы должны удовлетворять множеству различных требований, обеспечивая хорошее тяговое усилие, гарантируя безопасный уровень комфорта для оператора и избегая большого уплотнения почвы, что приводит к затруднению роста растений [1, 2]. Кроме того, эти требования должны быть удовлетворены при работе на различных почвах, свойства которых могут существенно различаться в зависимости от состава рельефа, влажности воздуха и температурных условий.

Основная часть. С проблемой переуплотнения почвы сталкиваются большинство сельскохозяйственных предприятий Беларуси, в результате чего потенциал произрастающих на их полях культур остается нераскрытым на 30–40 %. Уплотненная почва подобна плотно сжатой губке – в ней нет места для воздуха и воды.

В качестве нормируемых показателей согласно ГОСТ 26955–86 [3] приняты максимальные давления на почву и нормальные напряжения в почве на глубине 0,5 м в зависимости от сезона и влажности почвы, выраженной в долях наименьшей влагоемкости почвы (НВ). При расчете максимального давления на почву по ГОСТ 26953–86 вводятся поправки, зависящие от типа почвы (И₁), на-

грузки на единичный движитель ($И_2$), режима работы движителя (U_3), количества движителей, перемещающихся по одному следу (U_4), высоты протектора (U_5).

В итоге окончательная норма по максимальному давлению $q_{\scriptscriptstyle \rm H}$ на почву рассчитывается для каждого движителя по формуле

$$q_{H} = q_{H} + q_{H} (H_{1} + H_{2} + H_{3} + H_{4} + H_{5})$$
 (1)

где $q_{\rm u}$ – нормируемое максимальное давление на почву, к Π а.

Допустимые нормы воздействия движителей на почву для колесных тракторов 4х4, пересчитанные с учетом вышеназванных коэффициентов, представлены в таблице 1.

Таблица 1. Нормы максимальных давлений на почву для тракторов 4х4 (кПа)

Влажность почвы	Суглинистая почва				Супесчаная почва	
	Нагрузка на единичный движитель, кН					
	≤ 8	> 8 ≤ 16	> 16	≤ 8	> 8 ≤ 16	> 16
Весенний период						
Св. 0,9 НВ	80	80	80	96	96	96
Св. 0,7 НВ до 0,9 НВ вкл.	125	115	100	150	138	120
Св. 0,6 НВ до 0,7 НВ вкл.	150	138	120	180	165,6	144
Св. 0,5 НВ до 0,6 НВ вкл.	188	173	150	225	207	180
0,5 НВ и менее	225	207	180	270	248,4	216
Летне-осенний период						
Св. 0,9 НВ	100	100	100	120	120	120
Св. 0,7 НВ до 0,9 НВ вкл.	150	138	120	180	165,5	144
Св. 0,6 НВ до 0,7 НВ вкл.	175	161	140	210	193,2	168
Св. 0,5 НВ до 0,6 НВ вкл.	225	207	180	270	248,4	216
0,5 НВ и менее	263	242	210	315	290	252

Следы от сельскохозяйственных машин при традиционной технологии перекрывают от 80 до 100 % посевных площадей. При этом вес тракторов доходит до 10–20 т, зерноуборочных комбайнов до 25 т, а самоходных свеклоуборочных комбайнов до 50–60 т. Оп-

тимальный с точки зрения агрономии состав почвы — 50–45 % твердых веществ (минеральные частицы), около 5 % гумуса (органические вещества), 25 % воздуха и 25 % воды. И если такое соотношение поддерживать в течение года, то вполне возможно приблизиться к потенциально возможному плодородию почвы и продуктивности культур. Однако избыточное уплотнение влечет уменьшение свободного пространства, необходимого для перемещения воды, воздуха и роста корней растений. В благоприятных условиях корневая система озимой пшеницы может проникать в почву на глубину до 1,5–2 м, а сахарной свеклы — до 3 м. Взаимодействуя с уплотненным слоем, такие культуры резко снижают урожайность, особенно в засуху.

Исследования показывают, что применение на тяжелых сельскохозяйственных машинах в агрегате с тракторами тяговых классов 3 и 5 шин с давлением воздуха около 200 кПа вместо шин с давлением воздуха 370 кПа способствует улучшению показателей воздействия ходовых систем на почву, но не решает проблему переуплотнения дерново-подзолистых почв [4].

Первым шагом к снижению остроты проблемы, должно стать уменьшение давления на почву путем оптимизации и переоборудования машинно-тракторного парка сельскохозяйственных предприятий [5, 6].

Широко распространенным способом улучшения проходимости тракторов является сдваивание или страивание колес. Это дает положительный эффект для повышения тягово-сцепных свойств из-за увеличения сцепного веса трактора, снижения давления на почву, уменьшения колееобразования. Однако маневренность и технологические возможности тракторов снижаются из-за возрастания ширины трактора, ограничения скорости движения. Так для тракторов «БЕЛАРУС» максимальная скорость при сдвоенных передних колесах не должна превышать 10 км/ч. Сдваивание колес может приводить к увеличению уровня воздействия на подпахотные слои почвы. Это можно объяснить ростом опорной площади из-за увеличения количества шин и наличия расстояния между сдваиваемыми колесами. Кроме того эффективность от сдваивания колес уменьшается из-за ограничения производителями допустимого снижения давления воздуха в шинах таких колес.

Более рационально для снижения уровня воздействия на почву и улучшения их тягово-сцепных свойств использование шин с увеличенными размерами и более низким допустимым давлением воздуха в них. Шины имеют меньшую норму слойности, более эластичны. Примером создания модели колесных тракторов с низким давлением на почву является трактор ClaasAxos 320 (рисунок 1).

Установлены задние шины 1250/50R32, передние -750/55R30. Трактор имеет массу 4068 кг, двигатель 127 л.с.

Рисунок 1 – Трактор ClaasAxos 320

Заключение. Применение шин низкого давления способствует улучшению показателей воздействия ходовых систем тракторов на почву. Реализация данного решения возможна в первую очередь для тракторов тягового класса 1,4.

Список использованной литературы

- 1. Скотников, В.А. Проходимость машин / В.А. Скотников, А.В. Пономарев, А.В. Климанов. Мн.: Наука и техника, 1982. 328 с.
- 2. Русанов, В.А. Проблема переуплотнения почв движителями и эффективные пути ее решения /В.А. Русанов. М.: ВИМ, 1998. 368 с.
- 3. Техника сельскохозяйственная мобильная. Нормы воздействия движителей на почву: ГОСТ 26955–86, введ. 01.01.1987.- Минск: Белорус. гос. ин-т стандартизации и сертификации, 2018.-7 с.
- 4. Воздействие на почву ходовых систем тракторных агрегатов с прицепами / Г.И. Гедроить, С.В. Занемонский / Актуальные проблемы устойчивого развития сельских территорий и кадрового обеспечения АПК: материалы Международной научно-практической конференции (Минск, 3–4 июня 2021 года) / редкол.: Н.Н. Романюк [и др.]. Минск: БГАТУ, 2021. С. 405–407.
- 5. Определение показателей уровня воздействия колесных движителей тракторных прицепов на почву/ Г.И. Гедроить, С. В. Занемонский / Техническое и кадровое обеспечение инновационных технологий в сельском хозяйстве: материалы междунар. науч.-практ. конф., Минск, 24–25 октября 2019 г.: БГАТУ. Минск, 2019. С. 169–171.
- 6. Гедроить, Г.И. Уплотнение почв ходовыми системами сельскохозяйственных машин / Г.И. Гедроить // Агропанорама. 2010, № 6. С. 8–12.