Технический сервис в АПК Экономика

УДК 636.2.033.082.4

ПОСТУПИЛА В РЕДАКЦИЮ 29.03.2010

МЯСНАЯ ПРОДУКТИВНОСТЬ И ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ВЫРАЩИВАНИЯ ПОДОПЫТНЫХ БЫЧКОВ ГЕРЕФОРДСКОЙ ПОРОДЫ

А.А. Жданова, аспирантка (ВГАВМ)

Аннотация

В статье освещены результаты проведенных опытов по исследованию мясной продукции и экономической эффективности выращивания мясного скота герефордской породы в 3AO «Липовцы» Витебского района.

The results of the experiments undertaken to investigate the meat output and cost-effectiveness of Gereford breed beef cattle at the close corporation "Lipovzy", Vitebsk region, are reported.

Введение

Убойные показатели и морфологический состав туш у крупного рогатого скота не дают всесторонней оценки качества говядины. Пищевые достоинства мяса определяют по наличию содержания в нем белка, жира, минеральных веществ, энергетической ценности. Вкус мяса зависит от его нежности, сочности, аромата, плотности мышечной ткани и наличия жировых образований, характеризующих его «мраморность» [1]. Определение химического состава мяса и последующее установление его энергетической ценности — один из наиболее важных и достоверных методов [2].

Цель работы — изучить в сравнительном аспекте мясную продуктивность и показатели качества мяса у помесных по герефордской породе и чистопородных черно-пестрых бычков при различном уровне концентрированных кормов в рационах, а также сделать вывод о пищевой и энергетической ценности мяса опытных групп животных и экономической эффективности выращивания животных на мясо.

Основная часть

Для изучения качественных показателей мяса у подопытных животных на ОАО «Витебский мясокомбинат» был проведен контрольный убой помес-

ных по герефордской породе и чистопородных чернопестрых бычков, выращенных в хозяйстве ЗАО «Липовцы» Витебского района Витебской области, на рационах с содержанием концентратов 0%, 10% и 20% к основному рациону.

Питательную ценность мяса устанавливали по содержанию белка, жира, воды и золы в средней пробе мяса и длиннейшей мышце спины. Содержание полноценных белков определяли по количеству триптофана, а неполноценных — по количеству оксипролина. Отношением триптофана к оксипролину определяют, так называемый, белковый качественный показатель [3].

Для изучения влияния разного уровня концентратов в рационах кормления крупного рогатого скота на мясную продуктивность и качество мяса молодняка разной породной принадлежности был проведен контрольный убой бычков в возрасте 16 месяцев, по 3 головы из каждой опытной группы (табл. 1). Живая масса подопытных бычков при постановке на опыт была практически одинаковой.

Визуальная оценка поверхностного отложения жира на тушах свидетельствует о некоторых различиях в характере полива туш молодняка. Туши животных I и II групп имели менее выраженный жировой

Таблица 1. Убойные показатели подопытных бычков, (X±Sx)

Показатель	Группа животных				
	I	ll ll	III	IV	
Съемная живая масса, кг	428,0±18,8	477,0±5,77	520,0±5,8	440,0±5,8	
Предубойная масса, кг	415,5±18,2	462,4±14,1	504,4±5,6	426,8±5,6	
Масса парной туши, кг	238,7±14,7	271,3±7,7	305,8±2,2	246,0±3,7	
Выход туши, %	55,8±1,2	56,8±0,2	58,8±0,3	55,9±0,2	
Масса внутреннего сала, кг	7,23±0,12	7,76±0,06	7,8±0,01	6,80±0,06	
Выход внутреннего сала, %	1,75±0,04	1,68±0,05	1,55±0,02	1,59±0,07	
Убойная масса, кг	245,9±14,8	279,1±7,7	313,6±2,2	252,8±3,74	
Убойный выход, %	59,1±0,98	60,3±0,18	62,1±0,28	59,2±0,18	

Таблица 2. Морфологический состав туш подопытных бычков, (X±Sx)

Показатель	Группа животных				
		II	III	IV	
Масса охлажденной туши, кг	228,5±15,3	263,2±7,6	296,8±1,96	237,5±3,5	
Масса мякоти, кг	183,0±13,7	210,5±7,3	244,2±2,6	187,8±1,7	
Содержание мякоти, %	80,1	80,0	82,3	79,1	
Масса костей, кг	45,5±1,6	52,7±0,3	52,6±1,17	49,7±3,1	
Содержание костей, %	19,9	20,0	17,7	20,9	
Содержание в туше, %	75,6	75,7	77,5	74,5	
мяса жилованного	75,0	15,1	77,5	74,5	
жира	1,9	2,0	2,0	2,0	
сухожилий	2,6	2,3	2,8	2,6	
Выход мякоти на 1 кг кости, %	4,0	4,0	4,6	3,8	

полив по сравнению со сверстниками III и IV группы.

В 16-месячном возрасте предубойная живая масса у помесных по герефордской породе бычков III группы была выше по сравнению со сверстниками I и II группы соответственно на 88,9 – 42,0 кг или 21,4-9,0% и на 77,6 кг или 18,2%, чем у чистопородных черно-пестрых сверстников IV группы.

Наиболее тяжеловесные туши были получены от помесных по герефордской породе бычков III группы, их масса достигала 305,8 кг и на 67,1 — 34,5 кг превысила массу туш помесных по герефордской породе сверстников I и II группы. Превосходство герефордских бычков III группы над черно-пестрыми сверстниками IV группы составило 59,8 кг или 24,3 %.

Помесный молодняк II и III групп характеризовался более высокими убойными показателями по сравнению со сверстниками I и IV группы. По убойному выходу и выходу туши бычки III группы превзошли бычков II группы на 2,0-1,8 %, бычков I группы на 3,0 %, IV группы на 3,0-2,9 %. Превосходство черно-пестрых бычков IV группы над помесными по герефордской породе сверстниками I группы по убойному выходу и выходу туши в этом возрасте были незначительные.

У черно-пестрых бычков IV группы, получавших в рационе кормления 20% концентрированных кормов, масса внутреннего сала была самая низкая, по сравнению с животными III группы – ниже на 1,0 кг, с бычками II группы – на 0,96 кг и I группы – на 0,43 кг. По выходу внутреннего сала различия между чернопестрыми бычками и сверстниками III и IV группы были незначительные.

Таким образом, выращивание помесных по герефордской породе бычков обеспечивает повышение скороспелости и более раннюю готовность поставки (до 17 месячного возраста) скота на мясокомбинат. Это способствует сокращению затрат кормов. Дальнейшее выращивание животных ведет к значительному расходу кормов на образование жира.

Наиболее ценными компонентами туши являются мускульная и жировая ткань. Чем больше в туше мякоти и меньше костей, хрящей и сухожилий, тем выше пищевые достоинства мяса (табл. 2).

Анализ морфологического состава туш свидетельствует о том, что мясо всех опытных групп бычков характеризовалось оптимальным морфологическим составом (содержанием мякоти, костей и соединительной ткани). В тушах откормленных животных содержалось 79,1-82,3% мякоти и 17,7-20,9% костей. По массе мякоти животные III группы превосходили аналогов I группы на 61,5 кг или на 33,4%, II группы на 33,7 кг или 16,0%, черно-пестрых животных IV группы на 56,4 кг или 30,0 %.

Индекс мясности был выше на 0,8% у помесных бычков III группы — 4,6 против 3,8 у черно-пестрых сверстников, и на 0,6% соответственно выше, чем у помесных сверстников I и II группы. Следовательно, лучшее сочетание мякоти и кости было у помесных по герефордской породе бычков II группы.

Питательную ценность мяса устанавливали по содержанию белка, жира, воды и золы в средней пробе мяса (табл. 3).

В мясе помесных бычков содержалось больше

 Таблица 3. Химический состав и энергетическая ценность средней пробы мяса подопытного молодняка

Показатель	Группа животных			
	I	II	III	IV
Вода	65,2	63,4	60,1	66,48
Белок	19,2	19,5	21,5	17,82
Жир	14,8	16,3	17,6	14,61
Зола	0,8	0,8	0,8	1,09
Триптофан, мг%	230,9	247,5	248,5	212,4
Оксипролин, мг%	44,0	45,8	38,6	47,2
Энергетическая ценность мяса, МДж/кг	10,4	11,1	12,0	8,9
Белковый качественный показатель	5,2	5,4	6,4	4,5

подопытного молодияка на мясо					
Показатель	Группа животных				
Показатель	I	II	III	IV	
Живая масса в конце периода выращивания, кг	428,0	477,0	520,0	440,0	
Абсолютный прирост живой массы, кг	400,7	449,5	492,0	415,0	
Затраты корма на 1 голову, корм. ед.	3526,2	3865,7	4182,0	4233,0	
Затраты корма на 1 ц. прироста, корм. ед.	8,8	8,6	8,5	10,2	
Производственные затраты на выращивание 1 головы, тыс. руб.	1896,8	2100,2	2257,3	1965,0	
Себестоимость 1 ц. прироста, тыс. руб.	473,4	467,2	458,8	473,5	
Выручка от реализации 1 головы, тыс. руб.	2354,0	2623,5	2860,0	1966,8	
Прибыль от реализации 1 головы, тыс. руб.	457,2	523,3	602,7	1,8	
Уровень рентабельности. %	24.1	24.9	26.7	0.1	

Таблица 4. Экономическая эффективность выращивания

белка (21,5%) и жира (17,6%), соответственно и энергетическая ценность его была больше (12,0 МДж) на 3,1 МДж или 34,8% выше, чем у черно-пестрых сверстников и на 0,9 и 1,6 МДж или 8,1 и 15,4%, соответственно выше, чем во ІІ и І группах помесных животных.

По содержанию в средней пробе мяса такого важнейшего в пищевом отношении компонента, как протеин, черно-пестрый молодняк (IV группа) уступал помесным животным I, II и III группы от 7,7% до 20,6%.

Содержание триптофана и оксипролина было больше в мясе бычков II и III групп на 7,2 и 7,6% по сравнению с животными I группы. У черно-пестрых бычков содержание триптофана и оксипролина было меньше, чем у помесных аналогов I группы на 8,0%.

Животные черно-пестрой породы уступали помесным сверстниками по энергетической ценности мяса на 16,8-34,8%, по белковому качественному показателю мяса – на 0,7-1,9 единиц.

Таким образом, помеси герефордской и чернопестрой породы бычков обладают достаточно высоким качеством мяса, а по энергетической ценности и белковому качественному показателю значительно превосходят сверстников черно-пестрой породы.

Одной из задач данных исследований являлось определение экономической эффективности выращивания молодняка на мясо (табл. 4).

Результаты проведенных исследований свидетельствуют о том, что при выращивании помесных по герефордской породе бычков ІІІ группы было получено больше прибыли на 1 реализованное животное в сравнении со сверстниками других опытных групп на 79,4-600,9 тыс. руб. (86,8-0,3%).

Производство мяса было рентабельно по всем подопытным группам бычков, но наиболее высокий уровень рентабельности отмечен у помесных по герефордской породе бычков III группы — 26,7%, тогда как у сверстников IV группы он составил только 0,1%, у сверстников I группы, не получавших в рационе кормления концентрированных кормов, —24,1%.

Заключение

Результаты проведенных исследований свидетельствуют, что помеси герефордской и чернопестрой породы бычков III группы, получавших 20% концентратов к основному рациону, характеризовались самыми высокими показателями мясной продуктивности и качества мяса.

Разработки по совершенствованию элементов технологии выращивания молодняка нашли повсеместное применение в мясных хозяйствах нашей республики: СПК «Зембинский» Борисовского района, ОАО «Старица-Агро» Копыльского района, УП «Карповичи» Вилейского района, СПК «Сергеевичи» Пуховичского района, СПК «Вишневецкий» Столбцовского района Минской области, КСУП «Чашникское» Чашникского района, филиал «Голубичи» Глубокского района Витебской области и др.

Исследования позволили более эффективно провести племенную работу и создать в конечном итоге заводской тип герефордского скота канадской селекции.

Так как основные затраты при выращивании животных на мясо ложатся на корма, выращивание помесных по герефордской породе бычков, как на рационах с низким содержанием концентрированных кормов, так и на бесконцентратных рационах кормления является более эффективным и экономически выгодным методом выращивания животных на мясо.

ЛИТЕРАТУРА

- 1 Апанасевич, Т.Л. Сравнительная характеристика молодняка абердин-ангус х черно-пестрого и шаролезского скота по продуктивным качествам / Т.Л. Апанасевич //Вести национальной академии наук Беларуси. 2009. №1. С. 67-71.
- 2 Батраков, Н. Чтобы улучшить мясные качества скота / Н. Батраков, А. Тулисов, Н. Мельникова // Животноводство России, 2009. №1. C. 49-50.
- 3 Шляхтунов, В.И. Основы зоотехнии: учеб. пособ. / В.И. Шляхтунов, В.И. Смунев, Л.М. Линник. Минск: Техноперспектива, 2006. 323 с.