Таким образом, нами установлено, что соединения BiFeO₃ и BiMnO₃ образуют твердые растворы во всем диапазоне составов. Новая орторомбическая ($\sqrt{2}a_p \ge 4a_p \ge 2\sqrt{2}a_p$) фаза обнаружена между ромбоэдрическим BiFeO₃ и моноклинным BiMnO₃.

Работа выполнена при поддержке БРФФИ (грант №Т20Р-121) и РФФИ (грант № 20-52-00023).

Список использованных источников

1. Слабый ферромагнетизм в мультиферроиках на основе BiFeO₃ / И.О. Троянчук [и др.] // Письма в ЖЭТФ. – 2009. – Т. 89, №4. – С. 204–208.

2. Фазовые превращения в мультиферроиках Вi_{1-х}Ca_xFe_{1-x}Mn_xO₃ / И.О. Троянчук [и др.] // ФТТ. – 2016. – Т. 58, №9. – С. 1719–1723.

3. Crystal and Magnetic Structure Transitions in $BiMnO_{3+\delta}$ Ceramics Driven by Cation Vacancies and Temperature / D.V. Karpinsky [et al.] // Materials. – 2021. – V. 14. – P. 5805.

Шевченок А.А., к.т.н., доцент Белорусский государственный аграрный технический университет, Минск, Республика Беларусь СИНТЕЗ, СТРУКТУРА И СВОЙСТВА СЕГНЕТОЭЛЕКТРИКОВ SR BI₂TA₂O₉ ДЛЯ ОСАЖДЕНИЯ ТОНКИХ ПЛЕНОК В МИКРОЭЛЕКТРОНИКЕ

Тонкие сегнетоэлектрические пленки находят применение при создании устройств энергонезависимой памяти, конденсаторов, микроактюаторов, приемников инфракрасного излучения, оптических процессоров, волноводов и линий задержки, приборов на поверхностных акустических волнах и других акустооптических устройств. Однако практическое использование сегнетоэлектрических пленок в микроэлектронике сталкивается с серьезными трудностями из-за отсутствия совместимой технологии получения тонкопленочных сегнетоэлектрических материалов высокого качества с воспроизводимыми свойствами. И лишь в последнее десятилетие удалось добиться контролируемой совместимости тонких слоев сегнетоэлектриков с полупроводниковыми коммутационными матрицами в рамках планарной технологии полупроводниковых приборов. Такая интеграция, с одной стороны, открывает возможность создания целого ряда новых устройств, а с другой – позволяет избежать дорогих и ненадежных гибридных конструкций.

Для получения сегнетоэлектрических пленок одним из важнейших этапов является изготовление высококачественных распыляемых мишеней. Поэтому целью данной работы являлось исследование влияния технологических параметров процесса синтеза, формования и последующего спекания распыляемых мишеней сегнетоэлектриков SrBi₂Ta₂O₉ на их микроструктуру и свойства.

Соединение SrBi₂Ta₂O₉ было получено методом твердофазного спекания смесей оксидов и карбонатов соответствующих металлов. Необходимое количество оксидов Bi_2O_3 , Ta_2O_5 и SrCO₃ для синтеза сложнооксидного соединения номинального состава SrBi₂Ta₂O₉ определяли в соответствии с протеканием химической реакции:

 $SrCO_3 + Bi_2O_3 + Ta_2O_5 \rightarrow SrBi_2Ta_2O_9 + CO_2\uparrow$

Рассчитанное количество реагентов смешивали и измельчали в планетарной шаровой мельнице в течение 0,5 ч, в качестве дисперсионной среды использовался изопропиловый спирт. Синтез конечного продукта осуществлялся в две стадии. Первая стадия – медленный нагрев до температуры 690–750 °С и выдержка в течение 12 ч (два раза по 6 ч), после каждого раза образцы измельчали в мельнице. Вторая стадия – обжиг при температуре 800–815 °С в течение 20 ч с промежуточными перетираниями после каждых 6 ч.

Результаты рентгенофазового анализа полученного синтезированного порошка состава SrBi₂Ta₂O₉ показали присутствие не более 3 % примесей. Экспериментальные образцы и мишени для вакуумного распыления из синтезированного порошка изготавливали при давлении P=500 МПа и термообрабатывали на воздухе в интервале температур 1000–1300 °C.

Среди важнейших характеристик распыляемых мишеней, влияющих на параметры формируемых сегнетоэлектрических пленок, следует отметить физико-механические и электрофизические свойства. Причем, первые в значительной мере определяют и электро-теплофизические параметры. Исследовано влияние режимов термообработки в интервале температур 1000–1300 °С на микроструктуру и свойства полученных экспериментальных образцов (таблица). Исследование микроструктуры (излома) образца сегнетокерамики, спеченного при 1100 °С показало достаточно высокую пористость (примерно 15 %), что является неприемлемым для мишеней, распыляемых в вакууме. Спекание данной керамики при температурах 1250–1300 °С практически не изменяло фазовый состав в объеме образца, однако с наружных поверхностей наблюдалось значительное уменьшение Bi₂O₃. Получена высокоплотная микроструктура ($\rho_{отн}$ ~96 %) с преимущественно игольчатыми кристаллами шириной около 1 мкм и длиной 5–10 мкм. Промежутки между игольчатыми кристаллами были заполнены небольшими кристалликами до 1 мкм.

Анализ таблицы показывает, что с ростом температуры спекания от 1000 до 1300 0 С относительная плотность керамики, спрессованной при P=500 МПа, возрастает от 69 % до 98 %. Усадка по диаметру после спекания при температуре 1000 °С составляла 0,5 %, а после повторного спекания, при температуре 1300 °С – 17,5 %. Измерить микротвердость H_v и трещиностойкость K_{1C} экспериментального образца, спеченного при 1000 0 С, 2 ч, не удалось вследствие его высокой пористости.

Соединение	Тспекания	ρ _{отн.} ,	H _v ,	К _{1С,}	3
		%	ГПа	МПа*м ^{1/2}	
SrBi ₂ Ta ₂ O ₉	1000 ⁰ С, 2ч	69	_	-	90
SrBi ₂ Ta ₂ O ₉	1100 ⁰ С, 2ч	81	3,04	1,4	109
$Sr_{0,9}Bi_{2,05}Ta_2O_9$	1100 [°] С, 2ч	_	3,08	1,4	-
SrBi ₂ Ta ₂ O ₉	1200 ⁰ С, 2ч	94	_	-	120
SrBi ₂ Ta ₂ O ₉	1250 ⁰ С, 5 ч	96	3,26	1,6	121
SrBi ₂ Ta ₂ O ₉	1000 ⁰ С, 2ч+	98	2,94	1,4	123
	1300 ⁰ С, 2 ч				

Таблица 1 — Влияние технологических режимов изготовления соединения SrBi_2Ta_2O_9 (SBT) на его физико-механические и диэлектрические свойства

Следует отметить, что даже спеченная до высоких плотностей керамика SBT обладает низким значением микротвердости ($H_v \sim 3 \div 3,26$ ГПа) и коэффициента трещиностойкости K_{1C} (1,4–1,6 МПа*м^{1/2})

по сравнению с такими тугоплавкими материалами, как Al_2O_3 и ZrO_2 . Это может свидетельствовать о высокой хрупкости мишеней SBT, что необходимо учитывать при отработке режимов вакуумных методов напыления тонких сегнетоэлектрических пленок. С ростом относительной плотности керамики $SrBi_2Ta_2O_9$ от 69 до 98 % отмечено увеличение ее диэлектрической проницаемости от 90 до 123. Вероятно, это связано с изменением пористости керамики, а также с ростом размера зерна. Полученные данные по диэлектрической проницаемости нашего материала близки к данным других авторов.