Рентгеноструктурные исследования показали, что все составы серии $Sr_{1-x}Ln_xTiO_3$ (Ln: La, Pr; x: 0,05; 0,075; 0,1) кристаллизуются в структуре перовскита и характеризуются кубической элементарной ячейкой (пространственная группа Pm3m).

Список использованных источников

- 1. Lin, Y.H. Oxide Thermoelectric Materials / Y.H. Lin, J. Lan, C. Nan // Wiley-VCH. 2019.
- 2. Kovalevsky, A.V. Towards a high thermoelectric performance in rare-earth substituted $SrTiO_3$: effects provided by stronglyreducing sintering conditions / A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J. R. Frade // Phys. Chem. 2014. 16. pp 26946–26954.
- 3. Koumoto, K. Oxide thermoelectric materials: a nanostructuring approach / K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, R. Funahashi, // Annual review of materials research. 2010. 40. pp 363–394.

Сергиевич О.А.¹, к.т.н., Дятлова Е.М.¹, к.т.н., доцент, Шевченок А.А.², к.ф.-м.н., доцент, ¹Учреждение образования «Белорусский государственный технологический университет», г. Минск, ²Учреждение образования «Белорусский государственный

аграрный технический университет», г. Минск КЕРАМИЧЕСКИЕ ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ ДЛЯ УСТАНОВОК АПК

Электроизоляционные материалы в зависимости от областей применения и конструкции подразделяют на линейные (подвесные, (опорные, стержневые, штырьевые), стационарные опорноштыревые, стержневые, проходные др.). Керамические И (фарфоровые) изоляторы используются для изоляции и крепления проводов на воздушных линиях электропередач распределительных устройствах электростанций, подстанций. В АПК к электроизоляционным материалам предъявляют высокие требования по механической прочности, стойкости к термоударам и При эксплуатации теплопроводности. условиях В температур (свыше 1000 °C), агрессивных сред и ионизирующих излучений керамические изоляторы являются единственно пригодными [1].

Таким образом, представляет научно-практический интерес получение электроизоляционных материалов на основе системы Al_2O_3 — SiO_2 — R_xO_y с использованием модификаторов (CaO, MgO, SrO, BaO, CaF₂), способствующих активации процессов спекания и фазообразования.

Основной целью данной работы является разработка составов и технологических параметров получения керамических электроизоляционных материалов на основе промышленных порошков оксидов, природных минеральных веществ и наполнителей, а также исследование их эксплуатационных характеристик.

На основании литературных данных [1] установлено, что для синтеза электроизоляционных изделий представляет интерес корундовая или высокоглиноземистая керамика с содержанием Al_2O_3 не менее 70 %. В качестве исходных сырьевых материалов использовались, %: глина огнеупорная Веселовского месторождения (ТУ 14.2–00282049–001–2002), технический глинозем ГК–2 (ГОСТ 30998), карбонат бария (ГОСТ 2149), карбонат стронция (ТУ 95-2326), карбонат магния (ГОСТ 6419), борная кислота (H_3BO_3) (ГОСТ 18704), фтористый кальций (CaF_2) и химические реактивы (марки х.ч.). Опытные образцы изготавливались традиционным методом полусухого двухступенчатого прессования при давлении 20–30 МПа с последующей сушкой и обжигом в электрической печи в температурном интервале 1325–1375°С и выдержкой 1 ч.

Результаты измерения физико-химических свойств (водопоглощения, B, %, открытой пористости $\Pi_{\rm o}$,% и кажущейся плотности ρ , кг/м³) опытных образцов при различных температурах обжига представлены в таблице 1.

Индекс состава	Температура обжига, °С								
	1325			1350			1375		
	В, %	По, %	ρ, κΓ/m ³	В, %	$\Pi_0, \%$	ρ, $κΓ/M3$	В, %	По, %	ρ, κг/m ³
1	12,26	28,74	2343,7	0,08	1,55	2573,1	0,36	0,98	3036,9
2	15,14	35,11	2228,3	0,09	0,64	2328,3	0,42	1,06	2682,2
3	9,6	24,16	2319,5	0,15	0,37	2529,0	0,17	0,43	2664,9
4	15,35	27,71	1803,8	3,88	9,16	1995,0	0,54	1,34	2365,3
5	13,89	41,73	1941,3	9,4	16,73	1941,3	5,04	10,77	2265,4
6	24,31	45,79	1883,5	11,2	22,19	1982,6	8,06	20,06	2089,4

Анализируя полученные результаты установлено, введение модифицирующей добавки SrO снижает водопоглощение, а BaO незначительно повышает данный показатель.

Для всех составов характерно резкое снижение значения водопоглощения при повышении температуры обжига с 1325 до 1350 °C с увеличением количества расплава. Характерно резкое снижение значений открытой пористости при 1350 °C с дальнейшим небольшим увеличением при 1375 °C.

Средние значения показателей температурного коэффициента линейного расширения синтезированных при 1350 °C образцов при температуре измерения 300 °C составили $(4,6-5,8)\cdot 10^{-6}\,\mathrm{K}^{-1}$.

Исследования на химическую стойкость опытных образцов показали их хорошую устойчивость к химическим воздействиям H_2SO_4 и NaOH. Следует отметить, что опытные образцы противостоят воздействию щелочи лучше (98,4—99,8%), чем кислоты (96,1—99,2%). Образцы с ВаО имеют более высокую химическую устойчивость.

Ренттенофазовый анализ синтезированных при 1350 °C опытных образцов проводился на рентгеновском дифрактометре D8 ADVANCE фирмы «Вruker» (Германия). Фазовый состав образца оптимального состава представлен кристаллическими фазами корунда (Al_2O_3) и муллита ($3Al_2O_3$ ·2SiO₂), при этом муллита содержится намного меньше, чем корунда, обеспечивающего высокую химическую стойкость, твердость, механическую прочность и огнеупорность.

Оптические снимки поверхности опытных образцов исследовались с помощью оптического микроскопа со встроенной аналогово-цифровой фотокамерой Leica DFC 280 (Германия). Для получения снимков были взяты образцы оптимального состава, обожженные при температурах 1325 и 1375 °C (рисунок 1).

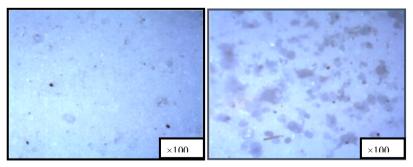


Рисунок 1 – Оптическое изображение поверхности образцов оптимального состава, синтезированных при 1325 (а) и 1375 °C (б)

На рисунке 1 видно, что структура опытных образцов однородна, отчетливо видны кристаллы кварца и железосодержащих фаз.

Разработанные электроизоляционные керамические материалы оптимального состава характеризуются следующими свойствами: водопоглощением 0,15–9,2 %, открытой пористостью 0,37–24,1 %, кажущейся плотностью 2319,5–2529,0 кг/м³, температурным коэффициентом линейного расширения при 300 °C – $(4,6-5,8)\cdot10^{-6}$ K⁻¹, химической устойчивостью к щелочам – (98,4-99,8) %, к кислотам – (96,1-99,2) %, удельном объемным электрическим сопротивлением при 100 °C – 10^{13} – 10^{14} Ом·см, пробивной напряженностью 30–34 кВ/мм, T_E – 790–840 °C.

Список использованных источников

1. Масленникова, Г.Н. Технология электрокерамики / Г.Н. Масленникова. – М. : «Энергия», 1974 - 224 с.

Слонская С.В., к.х.н., доцент; Лубинский Н.Н., к.х.н. Белорусский государственный аграрный технический университет, Минск, Республика Беларусь ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ТВЕРДОГО РАСТВОРА ОРТОФЕРРИТА SrFeO₃₋₈

Ферриты типа RFeO₃, где R- ионы Y^{3+} , La^{3+} и других редкоземельных элементов, кристаллизуются в структуре искаженного перовскита. В литературе, особенно в области физики магнитных явлений, их часто называют ортоферритами, рассматривая как соли ортокислоты H_3 FeO₃. Наиболее подробно изучены их кристаллическая структура, магнитные и электрические свойства. Установлено, что ортоферриты редкоземельных элементов обладают слабым ферромагнетизмом. Они являются неколлинеарными антиферромагнетиками, температуры Неля которых заключены в интервале 620—720 К. У некоторых из них при определенной температуре происходит спин-переориентационный переход, т.е. изменение оси легкого намагничивания от оси a к оси c, или переориентационный переход от слабоферромагнитного состояния в антиферромагнитное состояние (переход типа Морина). Некоторое время считалось, что наличие самопроизвольной намагниченности у ортоферритов редкозе-