Энергетика Транспорт

УДК 631. 431

ПОСТУПИЛА В РЕДАКЦИЮ 28.04.2011

НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ПОЧВЫ ПОД ВОЗДЕЙСТВИЕМ ХОДОВЫХ СИСТЕМ ПОЧВООБРАБАТЫВАЮЩИХ АГРЕГАТОВ

А.Н. Орда, докт. техн. наук, профессор, В.А. Шкляревич, ст. преподаватель (БГАТУ)

Аннотация

В статье обоснован вид напряженно-деформированного состояния почвы, определены величины и направления главных напряжений, совпадающие с направлениями главных осей деформаций в почве под воздействием ходовых систем почвообрабатывающих агрегатов.

The mode of deformation for soil condition is substantiated, the values and the directions of main voltages are determined, which are at a proper direction with the main deformation axes in the soil under the influence of soil-cultivating running systems.

Введение

При многолетней обработке в почве под воздействием ходовых систем и рабочих органов образуются различные по физико-механическим свойствам почвенные слои. Для описания взаимодействия ходовых систем почвообрабатывающих агрегатов с почвой вводится силовая характеристика, которая называется напряжением. Определение напряжений в почвенном массиве под воздействием ходовых систем имеет особо важное значение для оценки тягово-сцепных свойств почвообрабатывающих агрегатов, деформаций почвы и глубины колеи, а также выявления закономерностей изменения структурного состава почвы.

Основная часть

При движении почвообрабатывающего агрегата по поверхности поля деформации почвы под его движителем распространяются как в поперечном (рис. 1, a), так и в продольном направлениях (рис. $1, \delta$) по ходу движения агрегата.

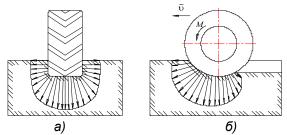


Рисунок 1. Схема распространения деформаций в почве под движителем почвообрабатывающего агрегата: в поперечной плоскости (а); в продольной плоскости (б) движителя

При воздействии движителя почвообрабатывающего агрегата на почву с увеличением нагрузки осадка почвы растет не только из-за ее уплотнения, но и в результате выдавливания частиц почвы из-под

движителя с образованием валов выпирания (рис. 2) [1]. Сжатие сопровождается образованием уплотненной зоны, имеющей форму конуса, основанием кото-

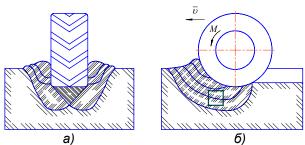
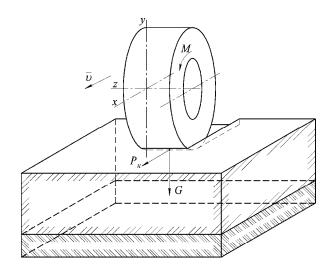



Рисунок 2. Схема образования уплотненной зоны в почве под движителем почвообрабатывающего агрегата

рого служит опорная поверхность движителя (рис. 2, a). С окончанием образования уплотненной зоны возникает устойчивое движение частиц почвы около движителя, сжимающее усилие при дальнейшем погружении его в почву практически не увеличивается значительно. Таким образом, при уплотнении почвы движителем почвообрабатывающего агрегата можно выделить зону уплотнения и зону сдвигов в плоскости, перпендикулярной скорости движения \overline{U} почвообрабатывающего агрегата (рис. 2, a) и продольной вертикальной плоскости (рис. 2, δ).

Рассмотрим деформацию почвы движителем почвообрабатывающего агрегата при его движении по поверхности поля со скоростью \overline{U} (рис. 3, a) для случая рыхлого верхнего слоя почвы и плотного подстилающего основания (плужной подошвы). Выделим элементарный кубик в рыхлом верхнем слое почвы, расположенный под опорной поверхностью движителя и перед его осью вращения по ходу движения агрегата в зоне сдвигов почвы (рис. 3, δ), для рассмотрения ее напряженного состояния. При движении движителя в ведущем (под действием момента

a)

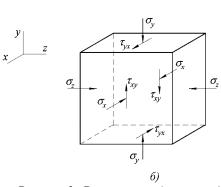


Рисунок 3. Схема взаимодействия движителя почвообрабатывающего агрегата с почвой (a) и напряженного состояния в почве под

M) и в особенности в ведомом режимах под действием распространения горизонтальных деформаций, направленных по ходу движения агрегата (рис. 1, δ и 2, δ), в почве возникают препятствующие им горизонтальные напряжения σ_x , которые действуют на площадках, параллельных плоскости y0z (рис. 3, δ). Под действием вертикальной нагрузки G-c одной стороны и реакции плотного подстилающего основания на данную нагрузку -c другой стороны, на его горизонтальных площадках (плоскость x0z) действует напряжение σ_y . Напряжение σ_z , действующее на площадках x0y, обусловлено выдавливанием частиц почвы боковой поверхностью движителя (рис. 2, a). Так как указанные нормальные напряжения σ_x , σ_y

и σ_z являются сжимающими (рис. 3, δ), то по знаку они принимаются отрицательными [2, с. 75].

От действия касательной силы тяги P_{κ} , развиваемой движителем, в горизонтальной плоскости на площадках $x\theta z$ возникают касательные напряжения \mathcal{T}_{vx} , вызывающие сдвиг почвы (рис. 3, δ). Согласно

закону парности касательных напряжений и знаку, принимаемому для касательных напряжений (по часовой стрелке — положительный, против часовой — отрицательный), если смотреть на рассматриваемый элементарный кубик почвы справа (рис. 3, δ), между касательными напряжениями, действующими на взаимно перпендикулярных площадках x0z и y0z, существует следующая зависимость: $\tau_{yx} = -\tau_{xy}$ [2, с. 76]. Таким образом, в рассматриваемом случае почва под опорной поверхностью движителя находится в объемном напряженном состоянии.

В соответствии с общей теорией напряжений на три взаимно перпендикулярные главные площадки элементарного кубика почвы действуют главные напряжения: σ_1 , σ_2 , σ_3 , причем, $\sigma_1 > \sigma_2 > \sigma_3$. При моделировании процесса взаимодействия движителя почвообрабатывающего агрегата с почвой важно знать не только величины, но и направления главных напряжений, потому что они совпадают с главными осями деформаций. Так как главными площадками называются те, на которых отсутствуют касательные напряжения, то в нашем случае (рис. 3, δ) площадки элементарного кубика почвы, перпендикулярные оси z, являются главными, а сжимающие напряжения σ_z обудут одними из главных напряжений.

Для определения величин двух оставшихся главных напряжений воспользуемся формулами для определения максимальных и минимальных нормальных напряжений, действующих на главных площадках элементарного кубика почвы [2, с. 85; ф. 2. 14, 2. 15]:

$$\sigma_{max} = \frac{\sigma_x + \sigma_y}{2} + \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2};$$
 (1)

$$\sigma_{min} = \frac{\sigma_x + \sigma_y}{2} - \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2}$$
. (2)

Положение главных площадок, на которых действуют найденные главные напряжения σ_1 , σ_2 , σ_3 , найдем через угол $\alpha_{\it гл}$, показывающий на какой угол необходимо повернуть исследуемый элементарный кубик почвы относительно его ребра, параллельного оси z (рис. 3, a). Из [2, с. 82; ϕ . 2. 8] известно, что

$$tg2\alpha_{zn} = -\frac{2\tau_{xy}}{\sigma_x - \sigma_y}.$$
 (3)

Так как тангенс представляет собой периодическую функцию с периодом π , то уравнению (3) удов-

летворяют углы
$$\alpha_{{}_{\mathcal{Z}\!{}^{\eta}_n}} = \alpha_{{}_{\mathcal{Z}\!{}^n}} + n\frac{\pi}{2} \ (n=0,\,1,\,2,\,\ldots).$$

Подставляя значения n, получим

$$\alpha_{_{\mathcal{Z}\eta_{_{0}}}}=\alpha_{_{\mathcal{Z}\eta}};\quad \alpha_{_{\mathcal{Z}\eta_{_{1}}}}=\alpha_{_{\mathcal{Z}\eta}}+90^{^{0}};$$

$$\alpha_{_{\it 2Л_2}}=\alpha_{_{\it 2Л}}+180^{^0}$$
 и т. д.

Если отложить углы $\alpha_{\it 2n_0}$, $\alpha_{\it 2n_1}$, $\alpha_{\it 2n_2}$, $\alpha_{\it 2n_n}$ относительно оси $\it x$, то есть повернуть элементарный кубик относительно его ребра, параллельного оси $\it z$, то определяются два взаимно перпендикулярных направления, образующих с плоскостью $\it x0z$ углы $\it \alpha_{\it 2n}$ и $\it \alpha_{\it 2n}$ + $\it 90^{\it 0}$. Одно направление относится к $\it \sigma_{\it max}$, другое – к $\it \sigma_{\it min}$. На рис. 4 изобразим грань рассматриваемого элементарного кубика почвы, параллельную плоскости $\it x0y$ и повернутую на угол $\it \alpha_{\it 2n}$ относительно оси $\it z$ на рис. 3, $\it 6$.

В соответствии с правилом из теории напряженного состояния, максимальное, в нашем случае сжимающее, напряжение σ_{max} всегда располагается в тех двух четвертях, где касательные напряжения τ_{xy} и τ_{yx} сходятся стрелками, а направление минималь-

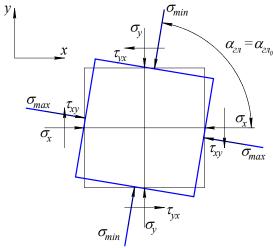


Рисунок 4. Схема к определению главных площадок элементарного кубика почвы под движителем

ного сжимающего напряжения σ_{min} будет в тех четвертях, где τ_{xy} и τ_{yx} расходятся стрелками (рис. 4).

Вычислив по зависимостям (1) и (2) значения σ_{max} , σ_{min} , и зная σ_z , присваиваем им индексы главных напряжений σ_1 , σ_2 , σ_3 с учетом знаков.

Так, при проведении экспериментальных исследований методом физического моделирования на базе почвенного канала [3] с помощью месдоз были установлены величины нормальных сжимающих напряжений в почве σ_x , σ_y и σ_z под колесом ($\sigma_x = 34$ кПа, $\sigma_y = 111$ кПа и $\sigma_z = 29$ кПа). Эксперимент проводился в следующих условиях: колесо 5.00-10.00, работающее в ведущем режиме, плотность дерновоподзолистой легкосуглинистой почвы $\rho = 1010$ кг/м³,

влажность почвы W = 20 %. Касательное напряжение сдвига почвы τ_{xy} найдем по следующей зависимости [4, с. 201-202]:

$$\tau_{xy} = \frac{P_{\kappa}}{S_{on}} = \frac{\varphi_{cu} \cdot Q_{cu}}{S_{on}} = \frac{\varphi_{cu} \cdot \sigma_{y} \cdot S_{on}}{S_{on}} = \varphi_{cu} \cdot \sigma_{y}, \quad (4)$$

где P_{κ} – касательная сила тяги, развиваемая движителем, H;

 S_{on} — площадь опорной поверхности движителя, м 2 ; φ_{cu} — коэффициент сцепления движителя с почвой;

 Q_{cu} — сцепной вес (текущее значение нормальной нагрузки на движитель), H.

Таким образом, подставив значение коэффициента $\varphi_{cq} = 0.5$ в зависимость (4), находим величину касательного напряжения сдвига почвы:

$$\tau_{xv}$$
 = 55,5 кПа.

По зависимостям (1) и (2) определяем величины экстремальных напряжений:

$$\sigma_{max}$$
 = 140 кПа и σ_{min} = 5 кПа.

С учетом $\sigma_z = 29$ кПа окончательно получаем значения главных сжимающих напряжений:

$$\sigma_1$$
 = 140 кПа, σ_2 = 29 кПа, σ_3 = 5 кПа.

И в заключение, с помощью зависимости (3) определим положение главных площадок (направление главных осей деформаций — угол α_{zz}) элементарного кубика почвы под исследуемым колесом: в данном случае $\alpha_{zz} = 27^0 \ 36'$.

Заключение

При изучении процессов, протекающих в рыхлом верхнем слое почвы под воздействием ходовых систем почвообрабатывающих агрегатов, обоснован вид напряженно-деформированного состояния почвы, определены величины и направления главных напряжений, совпадающие с направлениями главных осей деформаций в почве, как в общем виде, так и на конкретном примере, при проведении экспериментальных исследований.

ЛИТЕРАТУРА

- 1. Орда, А. Н. Оценка воздействия на почву ходовых систем и рабочих органов почвообрабатывающих машинно-тракторных агрегатов / А. Н. Орда, Н. А. Гирейко, А. Б. Селеши // Агропанорама. 2006. N_2 6. С. 6-9.
- 2. Подскребко, М. Д. Сопротивление материалов: учеб. / М. Д. Подскребко. Минск: Выш. шк., 2007. 797 с., ил.
- 3. Орда, А. Н. Эколого-энергетические основы формирования машинно-тракторных агрегатов: дис. ... д-ра техн. наук: 05. 20. 03 / А. Н. Орда. Минск, 1997. 269 с.
- 4. Скотников, В. А. Проходимость машин / В. А. Скотников, А. В. Пономарев, А. В. Климанов. Минск: Наука и техника, 1982. 328 с., ил.