Туров А.В., руководитель учебного центра УП «Атава», Минск, Республика Беларусь ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ НА ПРЕДПРИЯТИЯХ АПК

1. Автоматизация линии тепличного хозяйства

В тепличном хозяйстве ОАО «Дорорс» необходимо восстановить систему управления 4-мя линиями выращивания скороспелых культур по технологии «питательного слоя». Обеспечить циркуляцию раствора по заданной программе и движение лотков с растениями по конвейеру.

Рисунок 1 Технология «питательный слой».

Одновременно с включением клапана подачи раствора должен включаться электрический насос. Движение лотков по конвейеру обеспечить гидравлическим приводом.

Система управления была выполнена на базе контроллера фирмы WAGO (Германия) и содержит модули дискретного ввода/вывода, магнитные пускатели для включения двигателя, блок реле, блок питания.

Программное обеспечение написано на языке CoDeSys (стандарт МЭК 61131-3) и позволяет управлять гидравлическим приводом движения конвейера и системой полива. С помощю сенсорной панели можно задавать различные режимы работы.

2. Автоматизация скреперной установки

Постановка задачи: автоматизировать уборку навоза в коровнике с помощью скреперной установки на металлическом тросе.

Для решения задачи был использован контроллер ALPHA фирмы Mitsubishi (Япония). Система управления включает: шкаф автоматики с магнитными пускателями для включения двигателя, кон-

цевые выключатели движения, датчик температуры (переключение «зима-лето»), систему защиты от перегрузок по току. К шкафу может подключаться 3-х фазный асинхронный двигатель мощностью 1–3 кВт.

Рисунок 2 Контроллер ALPHA Mitsubishi Electric.

При перегрузке двигателя (препятствие, заклинивание, наезд на корову) меняется направление движения (7 секунд). После 6 попыток продолжить программу уборки скрепер отключается и подается световой сигнал «АВАРИЯ». В ручном режиме скрепер работает по концевым датчикам.

3. АСУ ТП электроустановок

Постановка задачи: на трансформаторной подстанции 10/0,4 кВ в г. Браслав обеспечить функции телеметрии для удаленной диспетчеризации.

Для решения задачи был разработан шкаф автоматики, который включает: программируемый контроллер WAGO (Германия), модули соряжения, блок реле, блок питания с резервным питанием от аккумулятора.

Первичные преобразователи тока и напряжения на подстанции подключаются к контроллеру по протоколу **Modbus.** Связь с диспетчерским пунктом осуществляется по протоколу **MЭК 60870-5-101/104.**

Обеспечены следующие функции телеметрии:

- 1. Телесигнализация:
- контроль положения коммутационных аппаратов (разъединителей, выключатели нагрузки, заземляющих ножей, автоматических выключателей);
- контроль наличия напряжения на кабеле 10 кВ;
- контроль положения дверей.
 - 2. Телеуправление:
- управление моторными приводами выключателей нагрузки 10 кВ;
- управление автоматическими выключателями на вводах 0,4 кВ.

3. Телеизмерение:

- телеизмерения текущих значений токов напряжений и мощностей на шинах секций 0,4 кВ;
- токов на секционном выключателе 0,4 кВ;
- токов на отходящих линиях 10 кВ.

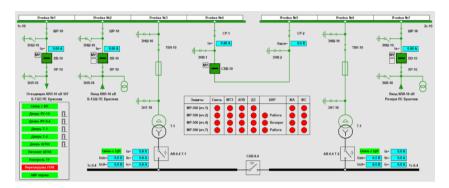


Рисунок 3 Мнемосхема транформаторной подстанции.

В результате применения современных средств автоматизации удается решить важные задачи энергосбережения: экологическая задача по сохранению природных ресурсов и экономическая задача по снижению себестоимости продукции.

Ярош В.О., Якубовская Е.С.

УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь АВТОМАТИЗАЦИЯ ЛИНИИ ПЕРЕРАБОТКИ ПОМЕТА КАК СПОСОБ ЭНЕРГОСБЕРЕЖЕНИЯ

Актуальным вопросом современного произодства являются безотходные технологии. В птицеводстве одним из продуктов, который может быть использован в сельском хозяйстве является помет. Но его применение сразу же в чистом виде ограничивается тем, что органика куриного помета содержит болезнетворные микроорганизмы и яйца гельминтов, способна уничтожить населяющих почву полезных насекомых, без которых невозможна регенерация плодородно-