Гаркуша К.Э., к.т.н., доцент, Гаркуша А.В., ассистент УО «Белорусский государственный аграрный технический университет»,

Войтехович И.В., руководитель проекта Всемирного банка, Минск, Республика Беларусь

ОПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА ЭНЕРГОСБЕРЕЖЕНИЯ В УЧРЕЖДЕНИЯХ ОБРАЗОВАНИЯ

При проведении энергоэффективных мероприятий в зданиях учреждений образования важно правильно оценивать размер экономии энергоресурсов, как в энергетических единицах (кВт·ч, Гкал, т у.т.), так и в процентном отношении к существующему потреблению (потенциал энергосбережения).

Расчет годовой экономии электрической энергии не вызывает особых вопросов, если корректно учитывать число часов работы оборудования и осветительных устройств, а также коэффициент использования мошности.

При определении годовой экономии тепловой энергии возникают трудности в выборе параметров внутреннего и наружного воздуха, по которым следует производить расчеты.

При нарушении санитарных норм температура воздуха в помещениях устанавливается ниже требуемой величины. Это происходит, как правило, из-за вынужденной экономии энергоресурсов. И этот факт имеет место не только в административных зданиях, но и в учреждениях образования. Действительно, снижение температуры на 1°С влечет за собой уменьшение годового расхода теплоты приблизительно на 7 %.

Средняя температура наружного воздуха за отопительный период зависит от погодных условий и может существенно отличаться от нормативного значения, что наблюдалось последние два года. Снижение теплопотребления от изменения наружной температуры на 1 °C будет таким же, как и от изменения внутренней (7 %). А зимы в 2019 и 2020 годах были теплыми, с отклонением наружной средней температуры на + 3...4°C.

Даты начала и окончания отопительного периода также диктуются погодными условиями, но на местах в целях экономии могут устанавливать свои режимы. Положительные температуры наружного воздуха позволяют не просто снижать отопительную

нагрузку в ночное время, праздничные и выходные дни, но и полностью отключать отопление без опасения разморозить систему. Сокращение продолжительности отопительного периода на 10 суток приводит к экономии теплоты на 6 %.

Существует методика [1] по составлению техникоэкономических обоснований для энергосберегающих мероприятий, в которой расчет и годового расхода теплоты, и экономии проводится с использованием нормативных параметров внутреннего и наружного воздуха.

На практике при использовании методических рекомендаций [1] возникают противоречия в расчетных величинах и величине фактического потребления теплоты в зданиях.

Проиллюстрируем вышесказанное на примере детского сада, расположенного в г. Ошмяны. Энергоаудит в этом дошкольном учреждении проводился в 2018 году в рамках международного проекта Соглашение мэров.

Сравним теплоэнергетические показатели детсада, рассчитанные по нормативам и по прибору учета. Централизованная система ГВС в здании отсутствовала, поэтому теплосчетчик отражал только затраты на отопление. Продолжительность отопительного периода в детских садах увеличена по отношению к другим общественным зданиям, так как отопление в них включается при граничной температуре не 8, а 10°C.

Рассматриваются мероприятия по утеплению наружных стен, кровли, замене окон, внедрению новой системы автоматизации отпуска теплоты. Параметры и расчетные данные сведены в таблицу 1.

Экономия теплоты от проведения мероприятий определялась по методическим рекомендациям [1] с использованием нормативных параметров внутреннего и наружного воздуха [2, 3].

Различие в значениях экономии за счет автоматизации теплопотребления объясняется тем, что процент экономии берется согласно рекомендациям одинаковым (23 %), а расчетное значение годового расхода нужно принимать как достигнутое, с учетом выполнения мероприятий по утеплению наружных стен, кровли, замены окон.

Достигнутое фактическое теплопотребление в нашем примере составляет 300.0 - 83.2 - 71.5 - 91.7 = 53.6 Гкал; расчетное 495.5 - 83.2 - 71.5 - 91.7 = 249.1 Гкал.

Таблица 1 – Расчет экономии теплоты и потенциала энергосберегающих мероприятий в детском саду

Параметры	<i>t</i> вн, °С	t _{cp.o} , °C	<i>T</i> _{от} , сут	$Q^{{ m rog}}$,	Экономия теплоты, Гкал				
					утепление стен	утепление кровли	замена окон	автоматизация	Всего
Фактические 2017 г.	18,5	2,2	190	300,0	83,2	71,5	91,7	12,3	258,7
Нормативные	21	0,2	222	495,5	83,2	71,5	91,7	57,3	303,7
					Потенциал энергосбережения, %				
Фактические 2017 г.	18,5	2,2	190	300,0	27,7	23,8	30,6	12,3	94,4
Нормативные	21	0,2	222	495,5	16,8	14,4	18,5	11,6	61,3

Обращает на себя внимание несоответствие нормативных и фактических параметров внутреннего и наружного воздуха. И если с погодой не поспоришь, то внутренняя температура в детском саду поддерживалась ниже нормативной на 2,5°C, а продолжительность отопительного периода и вовсе отличается от нормативного на 32 суток.

В результате расчетное теплопотребление отличается от фактического, принятого по прибору учета, на 195,5 Гкал, а потенциал энергосбережения (при делении расчетной экономии от предлагаемых мероприятий на фактический годовой расход) составляет 94,4 %.

Если строго следовать методике [1], то в нашем примере экономия по нормативным параметрам составляет 303,7 Гкал, что выше фактического годового потребления (300,0 Гкал).

На практике для сопоставимости расчетных и фактических данных оценку потенциала энергосбережения приходится проводить по фактическому теплопотреблению и по фактическим параметрам наружного и внутреннего воздуха, имевшим место в учреждении образования в базовом году. Смущает в таком подходе тот факт, что мы заранее прогнозируем нарушение санитарных норм в учреждениях образования в будущем.

Если температура внутреннего воздуха в дальнейшем будет соответствовать нормам, то величина экономии от энергосберегающих мероприятий не будет соответствовать реалиям, так как часть сбереженной теплоты пойдет на доведение температуры внутреннего воздуха в помещениях до нормируемого значения. Если температура наружного воздуха в будущем начнет

приближаться к нормативному значению, то экономия теплоты от проведенных мероприятий вырастет, впрочем, как и годовой расход.

Из вышесказанного следует, что в методику [1] следует внести изменения, чтобы устранить те противоречия, которые возникают при расчете потенциала сбережения теплоты в зданиях.

Список используемых источников

- 1. Методические рекомендации по составлению техникоэкономических обоснований для энергосберегающих мероприятий. — Минск, 2020.
- 2. СанПиН «Требования для учреждений дошкольного образования», утвержденные постановлением Минздрава Республики Беларусь от 25.01.2013 № 8.
- 3. СНБ 2.04.02-2000 Строительная климатология / Министерство архитектуры и строительства РБ Минск, 2001.

Герасимович Л.С., д.т.н., профессор, академик НАН Республики Беларусь,

Кравцов А.М., к.т.н., доцент, Клинцова В.Ф., ст. преподаватель УО «Белорусский государственный аграрный технический университет», Минск, Республика Беларусь

СИСТЕМА КОМПЛЕКСНОГО ЭНЕРГООБЕСПЕЧЕНИЯ ЖИВОТНОВОДЧЕСКОГО АГРОПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ С ИСПОЛЬЗОВАНИЕМ БИОГАЗОВОЙ УСТАНОВКИ

Использование биогазовых установок позволяет решить ряд важнейших проблем:

- экологическую (осуществляется санитарная обработка сточных вод (особенно животноводческих и коммунально-бытовых), содержание органических веществ снижается до 10 раз; количество таких микроорганизмов как кишечная палочка, синегнойная палочка и плесневые грибы находятся в безопасных пределах, патогенная микрофлора практически отсутствуют, яйца гельминтов отсутствуют);
- энергетическую (при метановом брожении высокий (80–90 %) КПД превращения энергии органических веществ в биогаз, который с высокой эффективностью может быть использован в двигателях внутреннего сгорания и для получения тепловой и электрической энергии);