Магнитные свойства твердых растворов $(Mn_{1-x}Fe_x)_{1.68}Sn$

© Г.И. Маковецкий, С.С. Дорофейчик, Т.М. Ткаченко, О.Ф. Демиденко

ГО "Научно-практический центр Национальной академии наук Беларуси по материаловедению", Минск, Беларусь

E-mail: makovets@ifttp.bas-net.by

(Поступила в Редакцию 3 апреля 2008 г. В окончательной редакции 10 июня 2008 г.)

Методом реакции в твердой фазе с использованием ступенчатого температурного режима получены твердые растворы системы $(Mn_{1-x}Fe_x)_{1.68}Sn \ (x \le 0.5)$ со структурой типа Ni₂In. Постоянные кристаллической ячейки *a* и *c* уменьшаются с увеличением концентрации железа в сплавах и для сплава $(Mn_{0.5}Fe_{0.5})_{1.68}Sn$ составляют *a* = 0.430 nm, *c* = 0.538 nm. Обнаружено присутствие сверхструктуры с параметрами ячейки $a_{ss} = 3a$ и $c_{ss} = c$. Удельная намагниченность сплавов нелинейно возрастает от 53 G · cm³ · g⁻¹ в сплаве $Mn_{1.68}Sn$ до 72 G · cm³ · g⁻¹ в твердом растворе $(Mn_{0.5}Fe_{0.5})_{1.68}Sn$. Температура Кюри изменяется от 270 K в исходном $Mn_{1.68}Sn$ до 365 K в сплаве состава $(Mn_{0.5}Fe_{0.5})_{1.68}Sn$. Все твердые растворы системы $(Mn_{1-x}Fe_x)_{1.68}Sn \ (x \le 0.5)$ в области температур 77–450 K проявляют металлический характер проводимости.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф06-091).

PACS: 75.25.+z, 75.50.Gg

1. Введение

Станниды переходных металлов кристаллизуются в гексагональную структуру типа Ni₂In и обладают интересными магнитными и электрическими свойствами. Авторами [1,2] в системе твердых растворов со структурой $B8_2$ на основе станнида марганца $(Mn_{1-x}Co_x)_{1.68}Sn_$ при температурах ниже 170 К обнаружено существование состояния спинового стекла. Так как магнитные и электрические свойства твердых растворов в значительной мере определяются концентрацией и типом катионов замещения, то, вероятно, их можно в определенных пределах варьировать, изменяя тип замещающих катионов и их концентрацию. Поэтому представляется вероятным, что если в станниде марганца произвести замещение части атомов марганца атомами железа, то можно ожидать получения широкой области твердых растворов с изменяющимися свойствами.

2. Методика эксперимента

Образцы твердых растворов $(Mn_{1-x}Fe_x)_{1.68}Sn$ $(x = 0 \div 0.5)$ синтезированы из порошков исходных элементов с интервалом по концентрации $\Delta x = 0.1$ в кварцевых ампулах при нагревании в электрической печи с последующей закалкой в холодную воду. Рентгенографический анализ осуществлен в СиКа-излучении при комнатной температуре на порошках, приготовленных из синтезированных слитков сплавов. Измерения их удельной намагниченности выполнены методом Фарадея в области температур 77-450 К в поле H = 0.86 Т. Удельное электросопротивление образцов в виде спрессованных таблеток диаметром 12 mm и высотой 5 mm измеряли четырехзондовым методом в атмосфере аргона.

3. Результаты исследований

Расчет постоянных элементарной кристаллической ячейки сплавов системы произведен на базе структуры типа Ni₂In с помощью программы FullProf. На рентгенограммах кроме рефлексов основной фазы типа Ni₂In пространственной группы $P6_{3}mmc$ наблюдаются сверхструктурные рефлексы, которые индицируются на основе кристаллической ячейки той же пространственной группы с параметрами $a_{ss} = 3a$, $c_{ss} = c$. Результаты расчетов постоянных элементарной ячейки сплавов системы ($Mn_{1-x}Fe_x$)_{1.68}Sn представлены в таблице и на рис. 1. Из рисунка видно, что постоянные a и c линейно уменьшаются с увеличением содержания железа в сплавах.

Температурные зависимости удельной намагниченности сплавов шести составов представлены на рис. 2, а численные величины удельной намагниченности, определенные из измерений при 77 К, приведены в таблице. В этой же таблице показаны и значения температур Кюри сплавов указанных составов, определенные с помо-

Параметры элементарной ячейки a и c, значения отношения c/a, удельной намагниченности при 77 K и температуры Кюри твердых растворов $(Mn_{1-x}Fe_x)_{1.68}Sn$

Состав	a,nm	c, nm	c/a	$\sigma_{77}, \ \mathrm{G}\cdot\mathrm{cm}^3\cdot\mathrm{g}^{-1}$	T_c, \mathbf{K}
Mn _{1.68} Sn	0.4393	0.5506	1.253	53.1	270
$(Mn_{0.9}Fe_{0.1})_{1.68}Sn$	0.4362	0.5464	1.253	56.0	265
$(Mn_{0.8}Fe_{0.2})_{1.68}Sn$	0.4342	0.5437	1.252	55.2	260
$(Mn_{0.7}Fe_{0.3})_{1.68}Sn$	0.4330	0.5421	1.252	59.3	280
$(Mn_{0.6}Fe_{0.4})_{1.68}Sn$	0.4318	0.5404	1.251	64.0	320
$(Mn_{0.5}Fe_{0.5})_{1.68}Sn$	0.4302	0.5380	1.251	72.4	365

Рис. 1. Концентрационные зависимости параметров элементарной ячейки a и c, а также отношения c/a твердых растворов системы $(Mn_{1-x}Fe_x)_{1.68}Sn (x \le 0.5).$

Рис. 2. Температурные зависимости удельной намагниченности твердых растворов $(Mn_{1-x}Fe_x)_{1.68}Sn \ (x \le 0.5).$

щью экстраполяции линейной части кривой зависимости квадрата удельной намагниченности от температуры к оси температур. Концентрационные зависимости температуры Кюри и удельной намагниченности σ_{77} сплавов системы представлены на рис. 3. Из приведенной табли-

цы и рис. 3 видно, что величина удельной намагниченности сплавов нелинейно возрастает от $53 \,\mathrm{G} \cdot \mathrm{cm}^3 \cdot \mathrm{g}^{-1}$ в сплаве $Mn_{1.68}Sn$ до $72 \,G \cdot cm^3 \cdot g^{-1}$ в сплаве состава (Mn_{0.5}Fe_{0.5})_{1.68}Sn. Температура Кюри сплава исходного состава Mn_{1.68}Sn близка к 270 K, что несколько выше значений, полученных другими исследователями. Температуры Кюри сплавов составов с x = 0.1 и 0.2 несколько ниже, чем у исходного соединения. Такое ее понижение следует ожидать, если считать, что указанные сплавы являются ферримагнетиками. Начиная со сплава состава $(Mn_{0.7}Fe_{0.3})_{1.68}Sn$ температура Кюри повышается до 280 К и в сплаве состава (Mn_{0.5}Fe_{0.5})_{1.68}Sn достигает 365 К. Такое поведение магнитных характеристик исследованных сплавов, возможно, является проявлением магнитного фазового перехода. Надеемся, что характер и особенности концентрационного изменения магнитных параметров сплавов удастся объяснить на основании результатов дальнейших мессбауэровских и нейтронографических исследований.

Рис. 3. Зависимости величин удельной намагниченности σ_{77} и температуры Кюри твердых растворов системы $(Mn_{1-x}Fe_x)_{1.68}Sn \ (x \le 0.5)$ от концентрации железа в сплавах.

Рис. 4. Концентрационная зависимость величины удельного электросопротивления при 77 К сплавов системы $(Mn_{1-x}Fe_x)_{1.68}Sn \ (x \le 0.5).$

Ход температурных зависимостей удельного электросопротивления, измеренного в области температур 77–430 К, свидетельствует о металлическом характере проводимости исследованных сплавов. На рис. 4 представлена концентрационная зависимость удельного электросопротивления при 77 К. Видно, что с увеличением содержания железа в сплавах ρ_{77} возрастает, что обусловлено большими структурными нарушениями, возникающими в твердых растворах, по сравнению с исходным соединением.

4. Заключение

Получены твердые растворы системы $(Mn_{1-x}Fe_x)_{1.68}Sn (x \le 0.5)$ со структурой типа Ni₂In. Установлено, что постоянные элементарной кристаллической ячейки линейно уменьшаются от $a = 0.439 \,\mathrm{nm}$ и c = 0.551 nm у $Mn_{1.68}Sn$ до 0.430 nm и 0.538 nmсоответственно у сплава (Mn_{0.5}Fe_{0.5})_{1.68}Sn. Обнаружено присутствие сверхструктуры в сплавах системы с параметрами ячейки $a_{ss} = 3a$ и $c_{ss} = c$. Удельная намагниченность сплавов σ_{77} и температура Кюри нелинейно возрастают с увеличением содержания железа в сплавах. Ход температурных зависимостей удельного электросопротивления свидетельствует о металлическом характере проводимости исследованных сплавов.

Список литературы

- N. Takiwa, T. Yoshida, T. Shimomura, R. Sugi, M. Matoba, S. Anzai. Phys. Status Solidi B 189, *1*, K 33 (1995).
- [2] R. Sugi, T. Shimomura, M. Matoba, S. Satsuzaka, S. Fujii, N. Hagiwara, S. Anzai. Phys. Status Solidi B 189, K 65 (1995).