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Type of the ground magnetic state of the studied system was established from the 
calculation of the total energy of the magnetic configuration: it’s the G-type antiferromagnetic 
state (G-AFM). Taking its total energy as zero, the energy for other magnetic configurations per 
formula unit is: 0.09 eV for C-AFM; 0.18 eV for A-AFM; 0.23 eV for FM. Thus, 
antiferromagnetic configurations lie under the ferromagnetic state and are separated by 
approximately the same energy value 90 meV. Considering that different directions of unit cell 
deformation correspond to different magnetic configurations, the use of the multiferroic YFeO3 is 
promising in the composition of straintronic structures. 
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Abstract 
The geometrodynamical model of the first-order phase transition in the generalized 

cosmological models and interface layers has been studied. The Euler-Lagrange equation system for 
the phase transition in the configuration space has been solved numerically. It has been shown that 
the production of the “true vacuum” phase nuclei with sizes much more than a critical one occurs at 
supersaturation of the system under the condition of rapid compression/expansion and is 
accompanied by appearing of the additional local minimum in the potential. It has been found that 
the “true vacuum” state and the metastable state is characterized by the Jacobi stability.  
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Introduction 
According to the representation of the actual cosmology, the phase transition occurred within 

the time range of the electroweak symmetry breaking t ~ 10–11 s [1], as consequence of the 
spontaneous break in the symmetry of this scalar field. The theory of cosmological phase transition 
allows the existence of a large number of instanton configurations for the scalar field with a non-
deep potential, in such a way that the energy density of the vacuum in domains does not exceed the 
general universe energy. The metric of cosmological transitions of first order should describe the 
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evolving domain of the true vacuum which is surrounded by domains of false vacuum. To describe 
the universe which is filled with barotropic fluid (dark energy or some scalar field) in Weil canonic 
coordinates and for negative cosmological constant  , can be used statistical solutions for the 
axially symmetric metric, which describes the dark hole in the vacuum [2]. The axially-symmetric 
metrics of Newman-Unti-Tamburino type are promising, as well, for describing cosmological phase 
transitions.  

Thermodynamical models of cosmological phase transition of the first order is characterized 
by the stepwise change of the zero average value of the scalar field  , which plays a role of the 
order parameter. The phase transition of the first order with a metastable state occurs in the models 
with strongly pronounced local minimum of the scalar potential at the zero temperature. The 
description of such transitions can be performed in the framework of the nucleation theory [3-5] but 
it should takes into account a nonlinear dependence of a nucleation rate on the level of 
supersaturation of the system. Kinetic nucleation models allow to describe the relaxation processes 
that are missing in the Van-der-Waals-Maxwell type models of the phase transitions. In such a way, 
the development of the geometric-thermodynamic approaches in cosmology needs to elaborate 
realistic models of the phase transitions of first order.  

The modeling of the phase transition of first order by using Finsler geometry was earlier 
developed for 2-dimensional interphase systems without borders [6–10], such as Langmuir 
monolayers, and the proposed approach allows to consider the distribution of relaxation times and 
the interaction between the phase domains in a metastable dynamical system. 

The model 
We will consider the cosmological first-order phase transition as an evolution of the system 

from «false vacuum» state to the «true vacuum» state during nucleation process and following 
nuclei growth. The nucleation rate is considered to be a function of the time. The statistical 
distribution function of such system should accounts the times of the nuclei production ti and 
relaxation times (life-times) i  of the nuclei: 

    1 1 1 1 2 2 2 2, , , ; , , , ; ...; , , ,N N N Np r r t r r t r r t   .              (1) 

Let introduce an evolution parameter s in such a way that the following relationship 
fulfilled: i it s    . In the macroscopic system, when the number of producing nuclei N is large 
enough ( N  ), one can pass to a limit: 

   
i

dt
ds

   .                (2) 

Then the distribution function (1) can be rewritten in the form:  ( ), ( ), ( ), ( )p r s r s t s s . This means 

that in the continuum limit a point in phase space  , , , ,r r t s  determines a configuration space MC 

of a contact statistical manifold. Here r  is 2D radius-vector, t   is a time coordinate, the 
derivatives over the evolution parameter s are denoted by the dots. 

The dynamics of the system in the configuration space MC is determined by the axially-
symmetric pseudo-Finsler metric [6-10]: 
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and on the mass surface 1   by the metric function F [6-10]:  
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where А(t, r) and В(t, r) are functions defined by an effective potential U: 
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The metric parameters A and В have the following explicit form: 
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Here k , p ,   are the phenomenological constants, V is a compression/expansion rate. 
 
Results and discussion 
Let us introduce the following denotes: ( ) ( ( ) ( ) ( ))j

w w wx t s r s s    и 

( ) ( ( ) ( ))j
w w

w

dty r s s
ds

     , j=1,2,3. The dynamic is given by the Euler-Lagrange equations: 
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The equations (7) has been solved numerically. The obtained result are shown in Figures 1 and 2. 
As one can see in Figure 1b,d, at small compression/expansion rates V the nucleation rate is 

approximately constant and the sizes of the producing nuclei are close to critical one 1  . At large 
values of V the system is destabilized with the energy and rate being enough to surmount the energy 
barrier and transfer the system in the supersaturated state. This process is revealed as appearing of 
the well-defined plateau in the isotherm (see Figure 1a, c) and as the producing of nuclei with the 
sized much more than critical one ( 40   in configuration space with metric (3) (Figure 1b) and 

7   for the phase transition on the mass surface (4)). 
The potential U is defined the free energy of the nuclei. The dependence of U on the evolution 

parameter s has been calculated along the geodesics and is shown in Figure 2. At small values of V 
the potential is a single-well potential. The local minimum in the potential corresponds to the “false 
vacuum” state. The increase of the parameter V leads to appearing the additional local minimum 
(see Figure 2b, d) in the potential that is typical for a metastable state.  

The Jacobi stability of the dynamical system solutions has been studied utilizing the 
Kosambi-Cartan-Chern (KCC )geometrical approach. We numerically calculated the eigenvalues of 
the second KCC-invariant  
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that is called a curvature deviation tensor and defines the Jacobi field along the geodesic. The 
system is called the Jacobi stable one if the real parts of the eigenvalues of i

jP  are strongly negative, 
and the trajectories of the dynamical system converge in the vicinity of a critical point. 

 
(a)   (b)   (c)   (d) 

                      
Figure 1. Isotherms s(r) (a, c) and relaxation times distributions ( )s  (b, d) calculated along the geodesics in the 

configuration space with axially symmetric metric (3) (a,b) and on the mass surface with metric (4) (c,d). The 
parameters utilized are V = 2‧10‒4  (solid curves), V = 2,6‧10‒4  and 4‧10‒4  (dashed curves) 

 
As one can see in Figure 2, at the negative values of parameter s (for the “false vacuum” state) 

the eigenvalues Λ1, Λ2 have different signs in all studied cases. Λ1, Λ2 are smooth regular functions 
at small values of V. However at increase of rates V the singular behavior of Λ1, Λ2 is observed 
during the phase transition into the “true vacuum” state. The “true vacuum” state (the potential 
minimum at large values of s) is characterized with Jacobi stability as Λ1 < 0 and Λ2 < 0. The 
producing of the large nuclei (nuclei size is much more  than critical one, 1 ) at high values of V 
is accompanied by the Jacobi unstable area (Λ1, Λ2 > 0) at  900;1000s  . In the model on the 
mass surface with metric (4) the metastable state is stable in the Jacobi sense. 

 
(a)   (b)   (c)   (d) 

         
Figure 2. Effective potential U (black curves) and eigenvalues of the second KCC-invariant Λ1,2 (blue and red points) 

calculated along the geodesics in the configuration space with axially symmetric metric (3) (a,b) and on the mass 
surface with metric (4) (c,d). The parameters utilized are V = 2‧10‒4  (a, c), V = 2,6‧10‒4  (b) and 4‧10‒4  (d) 
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Conclusion 
The studied geometrodynamical model of the first-order phase transition in the generalized 

cosmological models and interface layers in the configuration space demonstrates the nonlinear 
dependence of a nucleation rate on the level of supersaturation of the system that leads to 
production of the phase nuclei with sizes much more critical at high compression/expansion rate 
due to appearing the additional local minimum in the potential being typical to the metastable state. 
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Abstract 
The diffusion properties of a lattice fluid with the interaction of nearest neighbors on the two-

level non-rectangular lattice are considered. An analytical expression for estimating the jump 
diffusion coefficient is investigated. The results of the analytical calculations are compared with the 
MC simulation data. It is shown that the proposed analytical expression makes it possible to 
adequately assess the transport characteristics of the model from the qualitative point of view. The 
features of the behavior of the jump diffusion coefficient of the lattice fluide with the repulsive 
interaction of the nearest neighbors on two-level lattice are considered. 

Keywords: lattice fluid, two-level lattice, jump diffusion coefficient, diagram approximation, 
Monte Carlo simulation. 

 
Introduction 
Mass transfer, and the associated charge transfer, through diffusion plays an important role in 

many physical, chemical and biological processes [1]. The lattice gas or lattice fluid model is one of 
the simplest models suitable for describing this process. 

Within the framework of this model, particles can occupy the set of positions in space which 
forms the regular two- or three-dimensional lattice. These positions are called lattice sites. The 




