УДК 631.1

ОЦЕНКА ЭФФЕКТИВНОСТИ ТРАНСПОРТНО-СКЛАДСКОГО ХОЗЯЙСТВА МЕТОДОМ СВОДНОГО ИНДЕКСА

Студент— Паныш Ю.Н., 18 змо, 6 курс, ФТС Научный руководитель— Основин В.Н., к.т.н., доцент УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Аннотация. В статье рассмотрены варианты анализа эффективности функционирования системы транспортно-складского хозяйства.

Ключевые слова: потоки, ресурсы, потребители, склад, система сбалансированных показателей, услуги.

Предприятия развиваются и функционируют в постоянно изменяющейся среде. Безусловно, это оказывает огромное влияние на их деятельность. Они вынуждены приспосабливаться к различным условиям, поэтому на первый план выходит необходимость отслеживания как внешних, так и внутренних изменений.

Решению такой задачи способствует применение системы (ССП). Система сбалансированных показателей сбалансированных показателей в логистике - это инструмент, представляющий собой упорядоченных, взаимосвязанных согласованных совокупность показателей о состоянии, ходе, развитии логистической деятельности предприятия, позволяющий управлять потоками ресурсов для достижения стратегических целей.

На практике внедрение системы ССП возможно только с учетом особенностей конкретного предприятия и на основе разработанной системы ключевых показателей эффективности (КПЭ).

Ныне традиционная роль складов как мест хранения претерпела принципиальные изменения: требуется ускоренный оборот складских запасов, быстрое исполнение заказов потребителей, расширяется спектр складских услуг. Многие склады предоставляют клиентам полный набор услуг - от обработки их заказов до исполнения поставки продукции в окончательном виде. Клиент получает услуги по управлению запасами, подготовке товаров для продажи, проведению проверки их количества и качества, транспортно-экспедиторские услуги, составление документов и консультирование по их оформлению. Качественное и своевременное

выполнение складских операций во многом зависит от их информационной поддержки.

Развитое складское хозяйство влечет за собой издержки, которые можно сгруппировать следующим образом [1]:

- а) содержание складских помещений: амортизация зданий, оборудования, затраты на ремонт, расходы на отопление, электроэнергию, земельный налог;
- б) затраты на обслуживающий персонал: заработная плата рабочих, служащих, расходы на социальные нужды (страховые взносы);
- в) затраты на транспортные средства: амортизация, расходы на топливо и энергию, расходы на текущий ремонт;
- г) убытки от хранения запасов: старение материалов, расхождения в результатах инвентаризации.

Поэтому так важно управлять транспортно-складскими системами, при этом управление должно опираться на логистические принципы. Главная цель — оптимизация, посредством качественных и количественных преобразований со стороны субъекта управления, логистического потока в соответствии с параметрами, представленными в таблице 1 [2].

Таблица 1 – Критерии и параметры оптимизации логистических потоков

Критерий	Параметры					
Количество	Масса (объем)					
	Количество средств транспортировки					
	Интенсивность отправок					
	Коэффициенты использования грузоподъемности средств					
	транспортировки					
	Производительность					
Качество	Свойства					
	Гибкость					
	Готовность (возможность) осуществления движения					
	Уровень брака					
	Способность удовлетворить потребность потребителя					
Время	Продолжительность движения					
	Отклонение от нормативного времени движения					
	Скорость движения					
	Эффективность использования времени					
	Время обработки					
Место	Начальный (отправитель, поставщик), конечный (получатель,					
	потребитель) и промежуточные (посредники, как					
	отправитель, так и получатель) пункты, через которые					
	проходит логистический поток					
Траектория	Форма, конфигурация траектории					
	Расстояние между пунктами отправки / получения					
	Тип маршрутов (маятниковый, кольцевой)					

Критерий	Параметры					
Затраты	Затраты на осуществление движения					
_	Затраты на содержание запасов					
	Размер	упущенной	выгоды	при	несоблюдении	
	синхронизации потоков					
	Эффективность движения					
	Окупаемость вложений					

Разработка количественно измеримых и надежных в оценке показателей КРЭ способствует достижению поставленных стратегических целей предприятия, повышению эффективности его бизнес-процессов в целом и каждого подразделения. Такими характеристиками и будут ключевые показатели эффективности КПЭ — совокупность качественных и количественных параметров транспортно-складской деятельности по значениям которых судят о степени достижения целей.

КПЭ выполняет две ключевые функции [3]:

- 1) оценка результатов деятельности сотрудников компании, структурных подразделений и организации в целом;
- 2) наличие возможности разработки эффективной системы мотивации труда и мероприятий по повышению эффективности деятельности компании в пелом.

Основные коэффициенты, которые могут быть включены в КПЭ для анализа эффективности транспортно-складской системы, представлены в приложении A [4].

Это наиболее важные коэффициенты, которые могут быть включены в КПЭ для анализа эффективности транспортно-складской системы. Как правило, для анализа работы склада используют следующие показатели:

- объем работы складов;
- скорость оборота ресурсов;
- эффективность использования складских площадей и объемов;
- размер капиталовложений в складское хозяйство;
- себестоимость переработки одной тонны груза;
- срок окупаемости капиталовложений и др.

Оценка эффективности транспортно-складского хозяйства не может опираться только на анализ количественных показателей, необходимы еше и качественные показатели. оценивающие удовлетворенность потребителей, гибкость эффективность как внутренних И административных и технологических процессов транспортно-складского логистических хозяйства, так И внешних операций, потенциал обслуживающего персонала – эти показатели, В свою очередь, обеспечивают финансовый успех предприятия.

Качественные показатели по своей сути являются опережающими, поскольку они позволяют своевременно принимать решения о недопущении тех или иных ситуаций и адекватно оценивать процессы, происходящие на предприятии, а также обеспечивают долгосрочные управленческие воздействия.

Для анализа эффективности функционирования системы транспортноскладского хозяйства применим так же метод сводного индекса.

Сводный индекс — это некий интегральный показатель, по динамике которого можно установить единый характер изменений или тенденций разнонаправленных, разноименных и из меняющихся с различной интенсивностью показателей, характеризующих различные стороны деятельности цепи поставок.

На одном графике можно отразить динамику основных показателей экономической эффективности транспортно-складского хозяйства. Причем, в одной группе должны находиться показатели, имеющие позитивное направление изменения, то есть значение этих показателей необходимо увеличивать. Если показатель имеет негативное направление изменения, значение которого нужно уменьшать (затраты, текучесть кадров и т. д.), то для оценки используют обратное значение индекса данного показателя [5].

Этапы реализации метода сводного индекса:

1) по данным временных рядов определяются индивидуальные индексы по группам показателей:

$$I_{\text{инд}} = (\Pi_{\text{отч}}/\Pi_{\text{баз}}),\tag{1}$$

где $\Pi_{\text{отч}}$ — значение показателя отчетного периода;

 $\Pi_{\text{баз}}$ – значение показателя базового периода.

2) строится средний индекс по каждой группе показателей – среднее арифметическое индивидуальных индексов:

$$I_{\rm cp} = I_{\rm инд}; \tag{2}$$

3) строится единый сводный индекс – среднеарифметическое от средних индексов:

$$I_{\rm cB} = I_{\rm cp}. \tag{3}$$

Посредством данного метода можно не только проводить оценку фактического состояния транспортно-складского хозяйства, но и давать прогноз будущего состояния (на 3–5 лет), меняя значения показателей.

Данный метод не создавался непосредственно для оценки функционирования транспортно-складского хозяйства, прекрасно подходит для его анализа, а также выявления общих тенденций и прогнозирования. От эксперта или сотрудника предприятия требуется необходимые показатели логистической деятельности, рассчитать за необходимые отчетные периоды и построить график, на котором можно отразить динамику основных показателей экономической эффективности транспортно-складского хозяйства.

Список использованных источников

- 1. Кузнецова, А.А. Микрологистика: монография. М.: Издательский Дом «Экономическая Газета». 2015. 154 с.
- 2. Воронова, Д.Ю. Формирование логистических решений в управлении транспортно-складским хозяйством / Д.Ю. Воронова // Интеллект. Инновации. Инвестиции. 2016. $N_{\rm P}$ 5. C. 18—24.
- 3. Рахмангулов А.Н. Оценка социально-экономического потенциала региона для размещения объектов логистической инфраструктуры / А.Н. Рахмангулов, О.А. Копылова // Экономика региона. 2015. № 2 (38). С. 254–268.
- 4. Вискова Д.Ю. Управление транспортно-складским хозяйством: учебное пособие для студентов, обучающихся по программам высшего образования по направлению подготовки 38.03.02 Менеджмент / Д.Ю. Вискова, Е.И. Куценко, Е.А. Лавренко; Министерство образования и науки Рос. Федерации, Оренбург: ОГУ. 2016. 284 с.
- 5. Калмыкова Д.Ю. Методические аспекты диагностики цепей поставок / Калмыкова Д.Ю. // Вестник Оренбургского государственного университета. -2016. № 4 (165). С. 173-179.

УДК 629.1.02

УЛУЧШЕНИЕ ТЯГОВО-СЦЕПНЫХ СВОЙСТВ ТРАНСПОРТНО-ТЕХНОЛОГИЧЕСКИХ МАШИН

Магистрант — Кротов П.В., змаг 20 тс, ФТС Научный руководитель — Щурин К.В., д.т.н., профессор УО «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

Аннотация. Коэффициент сцепления движитель — поверхность является основным фактором реализации тягово-сцепных и тормозных свойств наземных транспортно-технологических машин (ТТМ). Предлагаются метод и устройства для повышения коэффициента сцепления движителей ТТМ при эксплуатации в зимних условиях.

Ключевые слова: тягово-сцепные показатели, коэффициент сцепления, пластичность грунтов, давление воздуха в шинах, ходовые колеса, горячий обдув.

Важнейшим фактором повышения эффективности сельскохозяйственного производства является ритмичность транспортно-логистических процессов с обеспечением нормируемых технико-экономических показателей технологических операций. В большинстве случаев характеристики и система технической эксплуатации применяемых машин позволяют гарантировать достижение заявленной цели, однако возникают ситуации, при которых необходима реализация дополнительных технических мероприятий.