И.П.Матвеенко, кандидат технических наук, доцент кафедры АСУП Белорусского государственного аграрного технического университета

Методика изучения микроконтроллеров AVR

В последние годы микроконтроллеры AVR приобрели большую популярность, привлекая разработчиков удобными режимами программирования, доступностью программно-аппаратных средств поддержки и широкой линейкой выпускаемых типов. Микроконтроллеры AVR представляют удобный инструмент для создания современных высокопроизводительных И экономичных встраиваемых контроллеров многоцелевого назначения. В частности, они используются в автомобильной электронике, бытовой технике, сетевых картах и материнских платах компьютеров, мобильных телефонах и т.д. [1].

Однако изучение реальных контроллеров оказывается затратной задачей, так как недостаточно только написать программу в определенной среде, необходимо с помощью программатора «прошить» процессор, т.е. записать в него разработанную программу, подключить к выходу контроллера исполнительные устройства и только тогда наглядно увидеть результат своей работы. А если что-то пошло не так, следует все повторить заново, но количество «прошивок» ограничено.

Поэтому изучение контроллеров удобнее и дешевле проводить виртуально, без паяльника или макетной платы, достаточно использовать программу **Proteus v7.7.**

Чтобы начать писать программы, нужно установить интегрированную среду разработки **AVR Studio 6.**

AVR Studio 6 предоставляет возможность осуществлять разработку и отладку программ для микроконтроллеров AVR фирмы ATMEL, поддерживает большое количество средств программирования и отладки.

Программы пишутся на языке ассемблер (Assembler), поддерживается также язык программирования Си.

86

Ассемблер – это инструмент, с помощью которого создаётся программа для микроконтроллера. Ассемблер транслирует ассемблируемый исходный код программы в объектный код, который может использоваться в симуляторах или эмуляторах AVR. Также ассемблер генерирует код, который может быть непосредственно введен в программную память микроконтроллера.

При работе с ассемблером нет необходимости в непосредственном соединении с микроконтроллером.

Приведем методику работы с AVR Studio 6 и Proteus v7.7.

Создание проекта в AVR Studio 6.

1. Запустить программу и после появления стартового окна в левом верхнем углу кликнуть New Project (рис.1).

Рис.1 Стартовая страница AVR Studio 6

2. Выбрать язык программирования AVR Assembler, кликнув наверху вкладку AVR Assembler Project (рис.2).

В строке Name указать имя проекта, используя латинский алфавит (например, Primer1).

В строке Location - путь и место хранения файлов.

Имя проекта, введенное в строке Solution name будет выводится в меню при старте.

Рис.2 Выходные данные создаваемого проекта

Если что-то пошло не так при создании проекта или при открытии ранее созданного проекта можно воспользоваться стандартным путем: на панели Menu выбрать File – New или Open – Project (рис.3).

A 🏘	ssemblerApplication1 - AtmelStud	io		Caller & Suprem 1	ter Barren and and an
File	Edit View VAssistX Project	Build Debug	Tools	Window Help	
	New	•	67	Project	Ctrl+Shift+N
	Open	•	0	File	Ctrl+N
	Add	•	₽	Example Project from ASF	Ctrl+Shift+E
	Close				
đ	Close Solution				
	Import	•			
	Save Selected Items	Ctrl+S			
	Save Output As				
Ø	Save All	Ctrl+Shift+S			
	Export Template				
	Page Setup				
3	Print	Ctrl+P			
	Recent Files	•			
	Recent Projects and Solutions	•			
	Exit	Alt+F4			

Рис.3 Создание или открытие проекта через панель Мепи

После клика ОК появляется окно выбора микроконтроллера (**Device** Selection) (рис.4).

Device Family:	All					Search for device	۶
Name	App./Boot Memory (Kbytes)	Data Memory (bytes)	EEPROM (byte	T	Device Info:		
AT90USB82	8	512	512 4		Device Name:	ATmega128	
ATA6285	8	512	320		Speed	0	
ATA6286	8	512	320		Vec.	27/55	
ATmega128	128	65280	4096		VCC:	2,773,5	
ATmega1280	128	65024	4096		Family:	тедаАУК	
ATmega1281	128	65024	4096		Datashee	<u>ts</u>	
ATmega1284	128	16384	4096				
ATmega1284P	128	16384	4096		Supported To	ols	
ATmega128A	128	65280	4096		NR Drag	<u>on</u>	
ATmega128RFA1	128	16384	4096		AVRISP m	kli	
ATmega16	16	1024	512				
ATmega162	16	65280	512		AVRONE		
ATmega164A	16	1024	512		JTAGICE3		
ATmega164P	16	1024	512		JTAGICE	mkll	
ATmega164PA	16	1024	512		\$ AV/D 0		
ATmega165A	16	1024	512		AVR SIMU	ator	
ATmega165P	16	1024	512		4 STK600		
ATmega165PA	16	1024	512	-			
-	10	1004	F10				

Рис.4 Окно выбора типа микроконтроллера

3. Выбрать тип микроконтроллера (например, ATmega128) [2], нажимаем ОК, после чего появляется страница редактора для написания программы на Assembler (рис.5).

Primer1 - AtmelStudio	state of Square de Passa
File Edit View VAssistX Project Build Debug Tools Window	Help
: 🔁 - 변) - 연 - 😂 🛃 👗 😓 👘 - 연 - 문 🛤	🔍 ⊲⊳ 🕅 Debug 🔹
: 🔁 🗁 🖓 🍋 암 암 양 🐅 🛍 📮 : 💵 🖬 🔶 🗤 🕨 수 🗉 🕨	🗊 🖆 📲 🚡 Hex 📑 🔹
Primer1.asm ×	
/* * Primer1.asm * * Created: 25.03.2013 19:18:40 * Author: Irina */	

Рис.5 Страница редактора для написания программы на Assembler

4. Написать программу. Для этого необходимо предварительно изучить наборы команд Assembler и знать постановку задачи, т.е. что мы хотим получить на выходе микроконтроллера. Нам нужно чтобы микроконтроллер принял информацию, обработал по заданному алгоритму и

выдал результат в понятной для нас форме. В простейшем случае, чтобы увидеть результат работы микроконтроллера, к его выходным портам подключают светодиоды, которые должны загораться в соответствии с алгоритмом [3].

Пример текста программы приведён ниже. В этой программе через порты В и D контроллера ATmega128 устанавливается набор заданных сигналов (11001100), т.е. производится включение соответствующих диодов.

```
/*
* Primer1.asm
*
* Created: 25.03.2013 19:18:40
*
    Author: Irina
*/
.def temp=r16 ; директива
; Начало программы
.cseg
        ; директива
              ; начало первой строки программы
.org 0
rjmp Start ; относительный переход к метке Start
; ------
Start:
ser temp; устанавливает все биты регистра temp в 1
out DDRB, temp; переводит все биты
out DDRD, temp; порта В и D на вывод
clr temp; обнуляет регистр temp (устанавливает все биты регистра temp
в 0)
out PortB, temp; отключает подтягивающие резисторы
out PortD, temp; портов В и D
Cicle:
ldi temp,0b11001100; включает светодиоды
out PortB, temp; порта В
rjmp Cicle; Возвращаемся к метке Cicle, зацикливаемся
```

5. Провести компиляцию программы, используя кнопку Debug – Start

Without Debugging или кнопку _____, как указано на рис.6. Суть работы компилятора заключается в переводе письменных символов, понятных для человека, в машинный код (в код нулей и единиц) и создание нового файла с расширением .hex.

Рис.6 Проведение компиляции программы

В окне Output появятся информация о проведенной компиляции, в конце должна быть надпись Build succeeded, которая подтверждает удачную сборку .hex файла.

Все файлы можно посмотреть там, где было указано в строке Location. В папке Debug, которая находится в папке, указанной в строке Location, будет находится скомпиллированный .hex файл, который необходим для прошивки реального микроконтроллера или для симуляции работы микроконтроллера в программе Proteus v7.7.

(by Labcenter Electronics) - симулятор принципиальных Proteus электронных С помощью него проверить работу схем. можно электрической схемы. большую спроектированной Proteus содержит библиотеку электронных компонентов [4].

В Proteus наряду с редактором электронных схем (ISIS) включен графический редактор печатных плат (ARES), т.е. при необходимости возможно развести печатную плату в соответствии с разработанной электронной схемой и создать реальное устройство.

Создание проекта в Proteus v7.7.

1. Открыть предварительно установленную программу Proteus v7.7.

 Собрать виртуальную электронную схему, которая в данном проекте включает:

- микроконтроллер ATmega128, программу для которого создали в AVR Studio 6;
- восемь светодиодов, с помощью которых можно увидеть результат работы микроконтроллера;
- восемь токоограничивающих резисторов;
- восемь кнопок, с помощью которых имеется возможность управлять вручную горением светодиодов.
- 3. Выбрать элементы виртуальной электронной схемы.

Это можно сделать двумя способами (рис.7 и рис.8).

Рис.7 Выбор элементов виртуальной схемы (1 способ)

Нажимаем на кнопку \rightarrow на панели инструментов слева (метка 1 на рис.7), затем на кнопку **P** (метка 2 на рис.7) слева от надписи DEVICES. Откроется окно, в котором необходимо выбрать нужный нам элемент. Например, **Microprocessor ICs** — **AVR Family** — **ATMEGA128**, а можно написть нужное название в строке поиска сверху (метка 3 на рис.7).

Второй способ выбора элементов – через панель **Menu — Библиотека** — Выбрать устройство/ Символ (рис.8).

После нажатия кнопки Ввод, выбранные элементы появятся в списке DEVICES на левой панели (рис.8).

untitled - ISIS Professional											
Фай	л Ви	д Правка	Сервис	Проект	Диаграмма	Исходник	Отладка	Библиотека	Шаблон	Система	Справка
	<i>6</i> [d		🕈 💠 🔍	€ € ₽	୭ ୯	🕸 <mark>В</mark> ыбрать У	/стройство	/Символ	P
k	C					· · · · · · · · · · · · ·	· · · · · · · · ·	‡ [≠] <u>С</u> оздать у	стройство,		
≯	5							С <u>о</u> здать сі	имвол		
+	0*					· · · · · · · · · · ·		Корпус			
LBL	↔							<i>№</i> <u>Р</u> азложит	ь		
	1		VICES					Ко <u>м</u> пили	овать в би	блиотеку	
++	Į.	ATMEGA128						<u>А</u> вторазм	ещение в (библиотеке.	
1		BUTTON LED-GREEN				· · · · · · · · · · · · · · ·		<u>П</u> роверит	ь корпуса.		
		HES				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	М <u>е</u> неджер	о библиоте	еки	
= >-											
₩						· · · · · · · · · · ·					

Рис.8 Выбор элементов виртуальной схемы (2 способ)

Аналогично осуществляется выбор других элементов схемы: резистор (**RES**), светодиод (**LED-GREEN**) и кнопка (**BUTTON**). Светодиоды могут быть выбраны различного свечения – зеленого (green), как в нашем случае, красного (red) или желтого (yellow) (рис.9).

4. Объединить элементы в схему.

Из списка DEVICES выбираем микроконтроллер и помещаем его в рабочую область. Потом добавляем аналогичным образом 8 светодиодов и 8 резисторов и 8 кнопок. Резисторы имеют сопротивление по умолчанию 10 кОм, а нам нужно 300 Ом. Для изменения сопротивления щёлкнем по резистору двойным щелчком и в открывшемся окне найдем поле «Resistance» и внесем туда число 300.

Элементы схемы на монтажном поле размещаем таким образом, чтобы с одной стороны, минимизировать связи между элементами, а с другой – пересечение, т.е. в исключить ИХ нашем случае, входные кнопки порту D микроконтроллера, подключаются К а светодиоды С ограничивающими резисторами порту B. Соединение К элементов 2D графика-линия на левой панели. осуществляется с помощью кнопки

Катоды светодиодов потребуется подключить к земле. Чтобы получить вывод «Земля» нужно щёлкнуть на кнопке **с**и в списке выбрать «GROUND». В результате получаем готовый макет проекта.

93

Рис.9 Размещение элементов схемы

5. Проверить работу собранной схемы.

В схеме кликаем на изображение контроллера и вводим путь, где находится .hex файл (рис.10), нажимаем ОК. Затем запускаем эмуляцию программы, нажав на кнопку **Старт**, и наблюдаем работу схемы в соответствии с написанной программой для микроконтроллера (рис.11).

Правка компонента			? ×
Обозначение:	U1	Скрыть: 📃	
Наименование:	ATMEGA128	Скрыть: 📃	Справка
PCB Package:	QFP80P1600×1600×120-6 - ?	Hide All 🗨	Даташит
Program File:	Laba1\Primer1\Primer1\Debug 🔄	Hide All 💌	Скрыт. пины
CKOPT (Oscillator Options)	(1) Unprogrammed 📃 💌	Hide All 🗨	
BOOTRST (Select Reset Vector)	(1) Unprogrammed 🗨	Hide All 🗨	<u> </u>
WDTON (Watchdog timer always on)	(1) Unprogrammed 🗨	Hide All 🗨	
CKSEL Fuses:	(0001) Int.RC 1MHz	Hide All 🗨	
Boot Loader Size:	(00) 4096 words. Starts at 0xF0(💌	Hide All 🗨	
SUT Fuses:	(00)	Hide All 💌	
Advanced Properties:			

Рис.10 Выбор пути к .hex файлу микроконтроллера

Рис.11 Работающий макет проекта

Таким образом, используя интегрированную среду AVR Studio 6 и программу Proteus v7.7., появляется возможность достаточно легко, с наименьшими материальными и временными затратами (что особенно важно в учебных условиях), изучить микроконтроллеры AVR фирмы ATMEL.

Литература

- Джон Мортон. Микроконтроллеры AVR. Вводный курс. М.: Издательский дом Додэка-XXI, 2006. – 272 с.
- Евстифеев А.В. Микроконтроллеры AVR семейства Mega. Руководство пользователя. М.: Издательский дом «Додэка-XXI», 2007. 592 с.
- Баранов В.Н. Применение микроконтроллеров AVR: схемы, алгоритмы, программы. – М.: Издательский дом «Додэка-XXI», 2004. – 288с.
- 4. Программирование в AVR Studio 5 с самого начала: http:// datagor.ru/microcontrollers/1787-programirovanie-v-avrstudio-5-s-nulya.html.