УДК 631.81: 633.112.9

ВЛИЯНИЕ КОМПЛЕКСНОГО ПРИМЕНЕНИЯ СРЕДСТВ ХИМИЗАЦИИ НА УРОЖАЙНОСТЬ И КАЧЕСТВО ОЗИМОЙ ТРИТИКАЛЕ

Influence of complex application of chemicals on winter triticale yield and quality

Близнюк Н.А., к.с.-х. наук, доцент, blizniuk79@mail.ru *Blizniuk N.A.*

УО «Белорусский государственный аграрный технический университет» Belarussian State Agrarian Technical University

Аннотация. Приведены результаты исследования по влиянию средств химизации на урожайность и качество зерна озимой тритикале. Установлено, что максимальная урожайность $83,2\,$ ц/га была характерна для варианта $N_{60+30+30}P_{40}K_{80}+$ CuSO $_4+$ эпин + импакт. Содержание белка в данном варианте составило 11,2%, масса $1000\,$ зерен $-53,3\,$ г.

Abstract. The results of research about chemicals influence on yield and grain quality of winter triticale are given. It is established that maximum yield 83.2 c/ha was in variant $N_{60+30+30}P_{40}K_{80} + CuSO_4 + Epin + Impakt$. Protein content in this variant was 11.2% and weight of 1000 grains -53.3 g.

Ключевые слова. Средства химизации, озимое тритикале, урожайность, качество.

Keywords. Chemicals, winter triticale, yield, quality.

Тритикале представляет собой новый ботанический род, полученный путем объединения хромосомных комплексов двух разных ботанических видов — пшеницы и ржи, что позволяет использовать преимущества обоих видов. Озимая тритикале является универсальной зерновой культурой, используемой как на продовольственные, так и кормовые цели. Данная культура отличается большими потенциальными возможностями увеличения урожайности, повышенным содержанием белка и незаменимых аминокислот. В тритикале удачно сочетаются высокая экологическая пластичность ржи с урожайностью и качеством пшеницы [1, с.34].

Исследования по изучению влияния средств химизации на качество озимой тритикале проводились на дерново-подзолистой легкосуглинистой почве. Пахотный горизонт почвы характеризовался следующими агрохимическими показателями: $pH_{KCl} - 5,8-6,0$, содержание $P_2O_5 - 310-330$ мг/кг, $K_2O - 210-240$ мг/кг, гумуса -2,0%.

Опыт состоял из 10 вариантов с трехкратной повторностью. Схема опыта предусматривала различные дозы и сроки внесения минеральных удобрений в сочетании с некорневой подкормкой растений медью (120 г/га) в

форме сульфата, а также обработкой посевов фунгицидом импакт $(0,5\,$ л/га) и регулятором роста эпин $(150\,$ мл/га): 1. Без удобрений; 2. $P_{40}K_{80}$; 3. $N_{60}P_{40}K_{80}$; 4. $N_{90}P_{40}K_{80}$; 5. $N_{60+30}P_{40}K_{80}$; 6. $N_{60+30}P_{40}K_{80}$ + импакт; 7. $N_{60+30+30}P_{40}K_{80}$; 8. $N_{60+30+30}P_{40}K_{80}$ + $CuSO_4$ + эпин; 10. $N_{60+30+30}P_{40}K_{80}$ + $CuSO_4$ + эпин + импакт.

Фосфорные и калийные удобрения в форме аммонизированного суперфосфата и хлористого калия вносились осенью под предпосевную культивацию, азотные в форме карбамида — весной в начале возобновления вегетации и в фазу первого узла, в форме КАС (разведение водой 1:3) — в фазу последнего листа. Некорневую подкормку растений сульфатом меди и их обработку эпином проводили в фазу первого узла, импактом — в фазу последнего листа.

Как показали результаты исследований, применение различных средств химизации оказало существенное влияние на урожайность озимого тритикале. Так, внесение фосфорно-калийных удобрений обеспечило прибавку урожайности к варианту без удобрений 8,1 ц/га (таблица). Однако основная роль в ее увеличении принадлежала азотным удобрениям. Возрастающие дозы азота способствовали значительному повышению урожайности зерна. Так, если при внесении N_{60} на фоне $P_{40}K_{80}$ прибавка урожайности к варианту без удобрений составляла 32,6 ц/га, то увеличение дозы азота до N_{90} повышало этот показатель на 5,8 ц/га. Дробное внесение N_{60+30} способствовало увеличению урожайности на 3,0 ц/га по отношению к варианту с разовым внесением аналогичной дозы. Дальнейшее увеличение дозы азота до 120 кг/га при дробном внесении ($N_{90+30+30}$) на фоне $P_{40}K_{80}$ также оказалось достаточно эффективным по влиянию на урожайность и обеспечивало прибавку урожайности зерна к варианту без удобрений 47,0 ц/га. Некорневая подкормка посевов сульфатом меди повысила урожайность зерна на 2,3 ц/га. Применение регулятора роста эпин не сказалось на заметном увеличении урожайности, в то время как фунгицидная защита посевов повысила ее на 2,2-3,3 ц/га зерна.

В целом по опыту оптимальным был вариант с совместным применением азотных удобрений в три срока, меди, эпина и импакта на фоне $P_{40}K_{80}$, которое обеспечивало получение урожайности зерна озимой тритикале 83,2 ц/га.

Проведенные исследования также показали, что азотные удобрения играют ведущую роль и в повышении качества зерна озимой тритикале. Так, внесение N_{60-90} увеличило содержание белка на 0.8-0.99%, а его сбор — на 2.3-2.9 ц/га (таблица) Дробное внесение 90 кг/га азота (N_{60} в начале возобновления вегетации + N_{30} в фазу первого узла) повысило содержание и сбор белка соответственно на 0.5% и 0.5 ц/га по сравнению с разовым внесением аналогичной дозы. Дополнительная подкормка N_{30} в фазу последнего листа оказалась достаточно эффективной: содержание белка в зерне увеличилось на 0.9%, а его сбор — на 1.1 ц/га. Обработка посевов озимой тритикале фунгицидом импакт, регулятором роста эпин и их подкормка сульфатом меди как в отдельности, так и при их комплексном использовании не приводили к изме-

нению белковости зерна, хотя сбор белка повышался.

Таблица – Влияние комплексного применения средств химизации на урожайность и качество зерна озимого тритикале

Вариант	Урожайность, ц/га	Прибавка урожайности, п/га	Содержание белка, %	Сбор белка, ц/га	Масса 1000 зерен, г
1. Без удобрений	31,2	-	8,8	2,4	46,5
2. Р ₄₀ К ₈₀ – фон	39,3	8,1	8,8	3,0	49,5
$3. N_{60}P_{40}K_{80}$	63,8	32,6	9,6	5,3	49,5
4. $N_{90}P_{40}K_{80}$	69,6	38,4	9,7	5,9	50,6
5. $N_{60+30}P_{40}K_{80}$	72,6	41,4	10,2	6,4	52,1
6. $N_{60+30}P_{40}K_{80}$ + импакт	75,9	44,7	10,3	6,8	52,2
7. $N_{60+30+30}P_{40}K_{80}$	78,2	47,0	11,1	7,5	53,3
8. $N_{60+30+30}P_{40}K_{80} + CuSO_4$	80,5	49,3	11,1	7,8	53,5
9. $N_{60+30+30}P_{40}K_{80} + CuSO_4 + эпин$	81,0	49,8	11,1	7,8	53,5
10. $N_{60+30+30}P_{40}K_{80} + CuSO_4 + эпин + импакт$	83,2	52,0	11,2	8,1	53,3
HCP ₀₅	2,1	V -	0,5		1,8

Таким образом, в наших исследованиях азотные удобрения явились главным фактором роста содержания белка в зерне.

Масса 1000 зерен, которая также является одним из показателей качества зерна, тоже претерпевала изменения в зависимости от доз азотных удобрений и колебалась от 46,5 до 53,5 г в зависимости от варианта (таблица). Применение импакта, эпина и сульфата меди не повлияло на изменение массы 1000 зерен. В оптимальном по урожайности варианте ($N_{60+30+30}P_{40}K_{80}$ + $CuSO_4$ + эпин + импакт) она составляла 53,3 г.

Библиографический список

- 1. Лапа В.В., Босак В.Н. Применение удобрений и качество урожая: монография. Мн., 2006. 120 с.
- 2. Симонов В.Ю. Агроэкологическая оценка фунгицидов в посевах ячменя // Земледелие. 2010. № 6. С. 33-35.
- 3. Симонов В.Ю. Эффективность применения химических и биологических фунгицидов в посевах ярового ячменя с учётом экологических последствий на агробиоценоз: дис. ... канд. с.-х. наук. Брянск, 2009.
- 4. Андросов Г.К., Симонов В.Ю. Оценка эффективности новых химических и биологических фунгицидов на посевах ярового ячменя // Зерновое хозяйство. 2008. № 3. С. 23-25.
- 5. Взаимодействие комплекса средств химизации в технологии возделывания зерновых культур / В.Ф. Ладонин, Н.И. Цимбалист, А.М. Алиев,

- Н.М. Доманов, С.И. Хачатрян, А.М. Бузько, С.В. Трушкин, И.В. Синицина, М.М. Левитин, В.И. Танский, Т.М. Петрова, Н.А. Цветкова, А.М.Симон, Ф.И. Копытова, Н.Г. Малюга, А.П. Долматов, Т.Н. Симонова, М.И. Никифоров // Защита растений в условиях реформирования агропромышленного комплекса: экономика, эффективность, экологичность: тезисы докладов на Всероссийском съезде по защите растений. 1995. С. 128-129.
- 6. Никифоров М.И. Пути оптимизации применения средств химизации при возделывании овса по интенсивной технологии: автореф. дис.... канд. с.-х. наук. М., 1996.
- 7. Практические рекомендации сельскохозяйственным производителям по возделыванию озимой тритикале на продовольственные и фуражные цели / О.В. Мельникова, М.П. Наумова, А.С. Юдин, М.И. Никифоров. Брянск, 2014.
- 8. Наумкин В.Н., Ступин А.С. Технология растениеводства. Спб.: Лань, 2014. 592 с.
- 9. Об инновационных технологиях в земледелии / И.Я. Пигорев, В.М. Солошенко, В.Н. Наумкин, А.В. Наумкин, А.М. Хлопяников, Г.В. Хлопяникова // Вестник Курской государственной сельскохозяйственной академии. 2016. № 3. С. 32–36.
- 10. Гринев А.М., Пигорев И.Я. Основы технологии получения экологически безопасной продукции растениеводства: учеб. пособие. Курск, 2009.
- 11. Драганская М. Г. Продуктивность севооборотов в зависимости от систем удобрения технологий возделывания культур / М.Г. Драганская, Н.М. Белоус, С.А. Бельченко // Проблемы агрохимии и экологии. 2011. № 2. С. 13-19.

УДК 635.657:631.811

ИСПОЛЬЗОВАНИЕ ПРИЕМОВ БИОЛОГИЗАЦИИ ПРИ ВОЗДЕЛЫВАНИИ НУТА В УСЛОВИЯХ СЕВЕРО-ЗАПАДНОГО ПРИКАСПИЯ

The use of biologization methods in the cultivation of chickpea in North-Western Caspian

Бондаренко А.Н., к.г.н.

Bondarenko A. N.

ФГБНУ «Прикаспийский НИИ аридного земледелия», с. Соленое Займище, Астраханская область, Россия FGBNU "Caspian research Institute of arid agriculture", S. Salt zaymishche, Astrakhan oblast, Russia

Аннотация. В представленной статье рассматриваются результаты по применению различных ростостимулирующих препаратов при возделывании