При анализе результатов расчётов, приведённых в табл. 2 следует, что схема МКЭ дает влетворительную сходимость только для квадратичной аппроксимации. Но наилучшая нимость соответствует квадратичному конечному элементу на основе моментной схемы. Квадратная плита (рис. 3) со стороной a = 0,2 м, толщиною t = 0,01 м, под действием ерхностной нагрузки q=0,002 МПа. Модуль упругости материала E = 2 МПа.

Come anti-	Линейный треугольный консчный элемент (а, см		Квадратичный треугольный КЭ ω , см	
ссты разоисния	МКЭ	МСКЭ	МКЭ	мскэ
3×5×5	0,0076	0,058	0,043	0,0573
3×7×7	0,0123	0,063	0,064	0,0688
5×9×9	0,0228	0,073	0,080	0,0731
5×11×11	0,0290	0,079	0,087	0,0814
5×15×15	0,0390	0,091	0,098	0,1070

 3. Расчётная схема квадратной рты, защемлённой по контуру, под действием равномерно распределённой нагрузки Как и в предыдущем так и в этом примере с учетом циклической симметрии для расчета выделена четвёртая часть конструкции. Аналитическое решение показывает, что максимальный прогиб в центре плиты при коэффициенте Пуассона v=0,49 равен w=0,0187 м. Результаты численного исследования приведены в табл. 3.

Самый лучший результат при расчёте такой плиты из слабосжимаемых материалов даёт квадратичный конечный элемент на основе моментной схемы [0].

Так, во всех выше приведённых случаях метод моментных схем даёт более точные результаты для слабосжимаемых эластомеров, чем традиционный метод конечных элементов.

Таблица 3. Результаты расчета прямоугольной плиты, защемлённой по контуру

	Сетка разбиения	Линейный треугольный конечный элемент ю, см		Квадратичный треугольный КЭ ю, см	
		МКЭ	МСКЭ	МКЭ	МСКЭ
	3×5×5	0,0031	0,0087	0,0095	0,0119
	3×7×7	0,0039	0,0125	0,0128	0,0141
	3×9×9	0,0044	0,0149	0,0146	0,0150
1	3×11×11	0,0047	0,0166	0,0157	0,0160
	5×15×15	0,0050	0,0186	0,0171	0,0177

Изложенные в [0, 0] выводы соотношений МКЭ позволяют учесть основные ойства жестких смешений как для изопараметрических, так и для криволинейных внечных элементов, для которых негативная ситуация усугубляется тем, что компоенты деформаций зависят не только от производных жестких вращений, но и от потупательных и вращательных смещений каждого элемента в целом.

. Галлагер Р. Метод конечных элементов. Основы. М.: Мир, 1984.

. Зенкевич О.К. Метод конечных элементов в технике. М.: Мир, 1975.

3. Киричевский В.В. Механика твердого тела. М.: АН СССР, 1973. № 4.

 Метод конечных элементов в механике твердых тел. А.С.Сахаров, В.Н. Кислоокий, В.В. Киричевский и др. К.: Вища школа, 1982.

РЕШЕНИЕ ОДНОЙ ЗАДАЧИ ДИФРАКЦИИ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА ПЕРИОДИЧЕСКОЙ РЕШЕТКЕ

Хорошун В.В., Хвощинская Л.А.

Харьковский национальный университет, Белорусский ГАТУ, khoroshun_vv@ukr.net

Дифракционные решетки применяются в различных областях науки и техники. Несмотря на использование компьютерных программ при решении задач дифракции, теоретические исследования и построение математической теории дифракции плоских электромагнитных волн играют особую роль, поскольку они сокращают экспериментальную доработку. Рассмотрим периодическую с периодом *l* решетку, состоящую из бесконечных лент, расположенных параллельно оси *OX* и перпендикулярно оси *OZ*. Расстояние между лентами равно *d*. Пусть на эту решетку под углом θ к оси *OZ* падает *E*-поляризованная волна вида $E_x^{nod} = e^{ik_0(y \sin \theta - x \cos \theta)}$, $H_x^{nod} = -\cos \theta \cdot E_x^{nod}$, $H_x^{nod} = -\sin \theta \cdot E_x^{nod}$.

Требуется найти дифракционное поле во всем пространстве.

Решение ищем в виде ряда Фурье в комплексной форме

$$\begin{split} E(y,z) &= \sum_{n} a_{n} e^{p_{n}z} e^{ik_{n}y} + e^{-iy_{0}z}, z > 0, \quad \sum_{n} b_{n} e^{-iy_{n}z} e^{ik_{n}y}, z < 0 \\ \text{и в аналогичном виде } H(y,z), \quad \Gamma \text{де } \gamma_{n} = \gamma_{n} + M\gamma_{n_{2}} + ik(n+v), \\ \gamma_{n_{k}} &= \sqrt{(k_{0}\varepsilon_{k}\mu_{k})^{2} - (\frac{2}{2}(n+v))^{2}} = \frac{2}{2} / |n| \sqrt{(x_{n}'\varepsilon_{k}\mu_{k})^{2} - (1+y_{n}')^{2}} = \frac{2\pi}{2} / |n| \eta_{n_{k}}, \quad k = 1, 2, \quad (n \neq 0), \quad \chi = \frac{4}{2} \sqrt{y_{2n}}, \\ \gamma_{0} &= \frac{2\pi}{2} / |n| \sqrt{(\chi(\varepsilon_{1}\mu_{1})^{2} - (\frac{2\pi}{2}(n+v))^{2}} = \frac{2\pi}{2} / M \sqrt{(\chi(\varepsilon_{2}\mu_{2})^{2} - v^{2})^{2}} + ikv, \quad M \text{ и } k \text{ постоянные, зависящие руки феррикта. \end{split}$$

от марки феррита.

Поскольку на щелях поле непрерывно, а на лентах решетки касательные компоненты электрического поля обращаются в нуль, то приходим к граничным условиям

$$\sum_{n} b_n e^{in\phi} = 0, \theta < \phi < 2\pi - \theta, \quad \sum_{n} b_n \gamma_n e^{in\phi} = \gamma_0, |\phi| < \theta.$$
(1)

Дифференцируя первое из уравнений (1) и обозначая $x_n = nb_n$, а также вводя параметр малости по формулам $\varepsilon_n^{\pm} = 1 + i ((\eta_n + M\eta_n \pm ik(1 + \gamma'_n))/(1 + M \pm k))$, приходим к краевым условиям

$$\sum_{n>0} x_n e^{in\phi} + \sum_{n<0} x_n e^{in\phi} = 0, \ \theta < \phi < 2\pi - \theta, \\ \sum_{n>0} x_n e^{in\phi} - \frac{1+M-k}{1+M+k} \sum_{n<0} x_n e^{in\phi} = g(e^{i\phi}), \ |\phi| < \theta,$$
(2)
FIGE $g(e^{i\phi}) = (1+M+k)^{-1} \left[\sum_{n>0} x_n e^{in\phi} - (1+M-k) \sum_{n<0} x_n e^{-in\phi} + \frac{1}{2\pi i} (y_0 - y_{01}b_0) \right], \ b_0 = \sum_{n=0} (-1)^n x_n / n.$

Введем две новые неизвестные функции $\Phi^+(z) = \sum_{n>0} x_n z^n$, $\Phi^-(z) = -\sum_{n<0} x_n z^n$, аналитические соответственно внутри и вне единичной окружности |z| = 1. Условие (2) запишется в виде краевой задачи Римана-Гильберта на дуге *l* окружности от т. $\bar{a} = e^{-i\theta}$ до т. $a = e^{\theta}$:

 $\Phi^{+}(t) = G\Phi^{-}(t) + g(t), t \in I,$ (3)

где G = (1 + M - k)/(1 + M + k), причем G < 0.

Случай *G* = -1 рассматривался в [1, 2]. Решение задачи выражалось через полиномы Лежандра и было достаточно трудоемким. Укажем другой способ решения задачи.

Решение задачи (3) ищем в классе функций, интегрируемых при $z \to a$ и $z \to a$ и исчезающих на бесконечности.

Обозначим $\sigma = \frac{1}{2\sigma} \ln G = \frac{1}{2\sigma} (\ln|G| + i\pi) = \frac{1}{2} + i\rho$. Тогда каноническая функция краевой задачи (3) имеет вид $X(z) = (z-a)^{-\sigma} (z-\overline{a})^{-\overline{\sigma}}$, причем $\sigma + \overline{\sigma} = 1$. Обозначим $P_n(\sigma, \theta) = \sum_{k=0}^n \frac{(-1)^k}{k!(n-k)} (\sigma + k) (\sigma + k + 1) ... (\sigma + k + n - 1) e^{i\theta(n-2k)}$, $P_0(\sigma, \theta) = 1$. Разложение в ряд функций

$$X(z) \text{ И } X^{-1}(z) \text{ Имеет вид } X(z) = \begin{cases} e^{2\rho(\theta-z)} \sum_{n=0}^{\infty} P_n(-\sigma,\theta)z^n, |z| < 1, \\ \sum_{n=0}^{\infty} P_n(-\sigma,-\theta)z^{-n-1}, |z| > 1. \end{cases} X^{-1}(z) = \begin{cases} e^{2\rho(x-\theta)} \sum_{n=0}^{\infty} P_n(\sigma,\theta)z^n, |z| < 1, \\ \sum_{n=0}^{\infty} P_n(\sigma,-\theta)z^{-n-1}, |z| > 1. \end{cases}$$

Решение задачи (3) находим по формуле

$$\Phi^{\pm}(t) = X^{\pm}(z) \gamma_{2\pi i} \int \frac{g(t)}{X^{+}(t)} \frac{dt}{t-z} \,. \tag{4}$$

Зная разложение в ряд функции, пройдя дугу *I* в положительном и отрицательном направлениях, интегралы типа Коши $J_n = \frac{1}{2\pi i} \int t^n X^{-1}(t) \frac{dt}{t-z}$ находим с помощью вычетов: $J_n - e^{2\pi i \sigma} J_n = res + res + res$ (последнее слагаемое появляется при отрицательном *n*). Тогда

$$\frac{1}{2\pi i} \int t^{n} X^{-1}(t) \frac{dt}{t-z} = \begin{cases} e^{2\rho(\pi-\theta)} (1+e^{-2\pi\rho})^{-1} \sum_{k=0}^{\infty} P_{k}(\sigma,\theta) z^{n-k}, |z| < 1, \\ (1+e^{-2\pi\rho})^{-1} \sum_{k=0}^{\infty} P_{n+k+2}(\sigma,-\theta) z^{-k-1}, |z| > 1, \end{cases}$$

$$\frac{1}{2\pi i} \int \frac{X^{-1}(t)}{t^{n}} \frac{dt}{t-z} = \begin{cases} e^{2\rho(\pi-\theta)} (1+e^{-2\pi p})^{-1} \sum_{k=0}^{\infty} P_{n-k}(\sigma,\theta) z^{k}, |z| < 1, \\ (1+e^{-2\pi p})^{-1} \sum_{k=0}^{\infty} P_{k}(\sigma,-\theta) z^{-n-k+1} - e^{2\rho(\pi-\theta)} \sum_{k=0}^{n-1} P_{k}(\sigma,\theta) z^{k-n}, |z| > 1. \end{cases}$$

Подставив все полученные разложения в формулу (4), приравнивая коэффициент при одинаковых степенях z, а также считая $\varepsilon_n = 0$ для всех n по модулю больших некоторого номера N, приходим к линейной системе уравнений для определения коэффициентов ряда Фурье искомой функции.

Агранович З.С., Марченко В.А., Шестопалов В.П. Журнал технич. Физики. 1962. Т.32, № 4.
 Хорошун В.В. Вестник ХГУ. Радиофика и электроника 1998. Вып. 405.

АНАЛИТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НАЧАЛЬНОЙ СТАДИИ РАЗВИТИЯ ВЕТРОВОЙ НЕУСТОЙЧИВОСТИ

Гестрин С.Г., Сергеева Е.К.

Саратовский государственный технический университет, viking64-88@mail.ru

Если течение газа происходит со скоростью, сравнимой со скоростью звука c, или является сверхзвуковым, то в уравнениях гидродинамики необходимо учесть сжимаемость среды. Расчеты показывают, что при $U_0 > 2\sqrt{2}c$ неустойчивость Кельвина-Гельмгольца тангенциального разрыва стабилизируется для волн, бегущих вдоль скачка, однако, неустойчивость сохраняется для волн, бегущих под углом к вектору скачка скорости.

Ниже исследована ветровая неустойчивость упругих колебаний тонкой пластинки, возникающая при её обтекании потоком сжимаемого газа. Показано, что с ростом U₀(y) происходит смещение максимума инкремента ветровой неустойчивости в сторону меньших длин волн.

Будем предполагать, что пластинка имеет толщину h, плотность ρ_1 и расположена перпендикулярно к оси оу. Граница между пластинкой и газом совпадает с плоскостью хог. Газ плотности ρ_2 занимает область y < 0, где движется со скоростью U(y) и область y > h, в которой покоится. Уравнение, описывающее свободные колебания пластинки, имеет вид:

$$\rho_1 h(\partial^2 \zeta / \partial t^2) = -D(\partial^4 \zeta / \partial t^4 + \partial \zeta^4 / \partial z^4),$$

где ζ — вертикальное смещение точек пластины. При этом компоненты смещения этих точек в плоскости *хог* являются величинами второго порядка малости по сравнению с ζ и потому полагаются равными 0,

$$D = Eh^{3}/12(1-\sigma_{0}^{2}), \qquad (2)$$

(1)

где E — модуль Юнга, σ_0 — коэффициент Пуассона. При наличии газа к правой части (1) прибавим разность между его давлениями p на противоположные поверхности пластинки:

$$\rho_{\rm h}h(\partial^2\zeta/\partial t^2) = -D(\partial^4\zeta/\partial t^4 + \partial\zeta^4/\partial z^4) + p(x, y=0, z; t) - p(x, y=h, z; t).$$
(3)

Возмущенные величины в газе представим в виде бегущей волны $p = p(y)\exp i(k_x x + k_z z - \omega t)$. Из системы уравнений газодинамики на поверхности пластины находим:

$$p(x, y = h, z; t) = \rho_2(\omega (w_y^{t} / v_y)_{y=0} / k^2 - \omega^2 / c^2) \omega_z(x; y = h, z; t)$$
(4)

При y > h уравнение для v_y имест существенно простой вид:

$$v''_{y} - (k^{2} - \omega^{2}/c^{2})v_{y} = 0.$$
(5)

Малая добавка $\delta > 0$ определяет правило Ландау-Линя обхода особой точки при $\text{Im}\,\omega = 0$: $U(y_c) = \text{Re}(\omega/k)_x.$ (6)

В пределе малых δ :

$$\lim_{s \to 0} \delta / U_0'(y_c)^2 (y - y_c)^2 + \delta^2 = (\pi / |U_0'(y_c)|) \delta (y - y_c)$$
⁽⁷⁾

В правой части выражения (7) величина $\delta(y - y_c)$ представляет собой δ – функцию Дирака.