Этот процесс продолжается циклически в течение 100...130 дней до достижения требуемой массы свиней [3].

Заключение

- 1. Использование данной системы кормления свиней позволяет выбирать минимальную производительность оборудования линий приготовления и раздачи жидких кормов на основании данных, получаемых с модуля расчета доз кормления и сигналов с датчиков наличия корма в кормушках.
- 2. Выбор минимальной производительности оборудования для приготовления и раздачи жидкого корма, позволяет экономить не менее (20...40)% затрат электроэнергии.
- 3. Снижение затрат электроэнергии на привод оборудования для приготовления и раздачи кормов осуществляется благодаря уменьшению частоты вращения электроприводов и, соответственно, снижению производительности оборудования при сохранении постоянным суммарного времени приготовления и раздачи жидких кормов свиньям.

Список использованной литературы

- 1. Черник Г.В., Хоцко Л.Г., Горшков Л.П. Механизация свиноводческих ферм и комплексов. –Л.: Колос, 1981. –С. 73-104.
- 2. Патент BY 2323 U, 2005.12.30. Автоматизированная система откорма свиней.
- 3. Гируцкий И.И.,Оценка энергозатрат на раздачу жидких кормов различной вл.ажности свиньям / И.И. Гируцкий, А.А. Жур, А.Г. Сеньков // Агропанорама. 2014 №3. С. 26-28.

УДК 631.333.92

Павленко С.И., к.т.н., доцент

Национальный университет биоресурсов и природопользования, г.Киев, Украина

ПРИМЕНЕНИЕ НАВОЗОРАЗБРАСЫВАТЕЛЕЙ В МЕХАНИЗАЦИИ КОМПОСТИРОВАНИЯ

Введение

Современные технологии переработки навоза и получения органических удобрений требуют эффективного технического обеспечения средствами механизации. Выпускаемые промышленностью и используемые в сельскохозяйственных предприятиях машины и оборудование, в целом, обеспечивают выполнение поставленных задач. Однако большое количество наименований и разнообразие типажей по техническим параметрам необходимых машин, создают организационные проблемы, вынуждающие хозяйственников работать по привычным технологиям естественного компостирования. Одним из вариантов повышения эффективности использования техники является расширение технологических и технических возможностей существующего оборудования, в частности, разбрасывателей органических удобрений.

Основная часть

Существующие рекомендации по использованию навозоразбрасывателей в технологиях компостирования [1, 2, 3] не охватывают возможного разнообразия технологических, технических и организационных условий и их взаимосвязей. Логические последовательности связей между операциями и используемым технологическим оборудованием, результаты экспериментальных исследований и наблюдений являются основными методами исследований.

Система машин для механизированного процесса естественного компостирования отработана и обеспечивает получение органических удобрений по следующим механизированным технологическим операциям: удаление навоза — погрузка — карантирование — хранение — погрузка — внесение на поля. Для этого используются технические средства общего назначения: бульдозеры, автосамосвалы, тракторные агрегаты с прицепными тележками, погрузчики периодического действия, а также специальная техника: механические системы удаления и погрузки навоза, погрузчики непрерывного действия, кузовные навозоразбрасыватели органических удобрений.

Интенсивное (ускоренное) компостирование отходов в буртах на площадках открытого и закрытого типов включают следующие механизированные технологические операции: удаление навоза \rightarrow

погрузка \to транспортирование и разгрузка \to карантирование \to приготовление смеси \to формирование бурта \to контроль за процессами компостирования \to внесение химических ингредиентов (при необходимости) \to стабилизация (дозревание) \to погрузка \to внесение (распределение).

Последовательность операций механизированного процесса при естественном компостировании имеет линейный характер: каждая операция выполняется самостоятельно, независимо от предыдущей во времени, используемых технических средств и влияния на конечный продукт - навозную смесь. При ускоренном компостировании последовательность действий имеет влияние на выбор технических средств, качество проведенных операций и время компостирования. Поэтому использование тех же технических средств при естественном компостировании не удовлетворяет технологическим требованиям при ускоренном.

Например, при естественном компостировании операция «транспортирование - разгрузка» выполняется обычными самосвальными автомобилями и прицепными тележками, агрегатируемые с тракторами, с боковой или задней разгрузкой. Компостируемая смесь укладывается слоем от 0,5 да 1,0 м, занимая значительные площади для хранения. Для создания условий самосогревания смеси, происходящее при ускоренном процессе, необходимо выполнить укрупнение и образование буртов из перерабатываемого материала. Бульдозеры, ковшовые погрузчики различных типов в этом случае основные технические средства, выполняющие работу. В тоже время применяемые саморазгружающие кузова и прицепы типа навозоразбрасывателей ПРТ обеспечивают формирование бурта без необходимости в бульдозерах и погрузчиках.

Проведенные нами исследования показали, что агрегат в составе трактора Т-150К и ПРТ-10, базовой комплектации и без изменения режимов работы обеспечивает равномерное по высоте и ширине основания формирование бурта. Максимальная высота — 1,7-1,8 м, ширина основания — 4,0-4,5 м, сечение бурта — трапецеидальное. Исходное сырье — подстилочный помет, влажностью 35-45%. Управляемость шириной и высотой бурта - высокая. Аналогичные результаты по формированию бурта получены агрегатом, состоящего из трактора МТЗ-80+ПРТ-7 с измененными конструкциями рабочих органов битеров со стандартными кине-

матическими параметрами: высота — 1,5 м, ширина основания — 2,6 м, сечение бурта — треугольное. Исходное сырье: свежий подстилочный навоз к.р.с., влажностью 75-80%. Размещение на днище прицепа тюков соломы обеспечило эффективное их разрушение, измельчение и смешивание с навозом, поскольку часть обрабатываемого сырья в бесподстилочном виде. Качество смешивания существенно уменьшило площадь пространства занимаемого сырьем.

При значительных объемах внесения технологических ингредиентов: воды, влагопоглащающих материалов (соломы, тырсы), дополнительных материалов (торфа, лигнина, осадка сточных вод) существует проблема смешивания из-за особенностей влагопоглащающих способностей добавляемого сырья или помета (навоза). При этом кузов навозоразбрасывателя служит емкостью для послойного накопления и активного перемешивания. Установлено, что при влажности подстилочного помета 35-45% процессы компостирования протекают в мезофильном режиме — 40-45 °C. Получить эффективное обеззараживание, протекающие при термофильном режиме — 55-60 °C, возможно при добавлении воды, количество которой составляет 200-300 литров на тонну пометной смеси, чтобы обеспечить оптимальную влажность смеси 60-65%. Поверхностное внесение воды образовало корку толщиной 300-400 мм, а дальше жидкость не проникала. Использование агрегатов в составе трактора Т-150К+ПРТ-10 и погрузчика Т-156 позволило эффективно перемешивать и распределять влагу по сечению бурта, изменить фракционный состав смеси (разрушить комки и груды), повысить температуру внутри бурта до 60-65°С, убрать очаги плесени и грибков, обеспечить производительность до 250-300 т за смену.

Фактически проведенная работа агрегатами производила операцию контроля за процессами компостирования. Использование в таком составе агрегатов для контроля та температурой в каждом случае определяется экономической целесообразностью. По нашим расчетам агрегат Т-150К+ПРТ-10 и Т-156 могут обеспечить переработку до 5000 т в год, а МТЗ-80+ПРТ-7+ПЕ-0,8 до 3000 т/год подстилочной смеси. При больших объемах переработки для контроля компостирования необходимо применить прицепные аэраторы-смесители [4, 5].

Выполненное теоретическое и экспериментальное исследование позволило разработать и реализовать ряд технических решений,

направленных на улучшение технологичности и технических характеристик серийного навозоразбрасывателя серии ПРТ.

Заключение

Полученные результаты показывают эффективность использование тракторных агрегатов с навозоразбрасывателями серии ПРТ для операций ускоренного компостирования: транспортировки, формирования бурта, смешивания компонентов смеси. Учет технологических условий использования и технические решения расширяющие возможности серийного оборудования ускорят процессы внедрения ускоренного компостирования.

Список использованной литературы

- 1. Петренко И.М. Процессы компостирования отходов животноводства и растениеводства. Монография. Краснодар: КГАУ, 2002. 328 с.
- 2. Бондаренко А.М. Технические средства для подготовки и использования органических удобрений / А.М. Бондаренко // Вестник РАСХН, 1999, №2 С. 77-79.
- 3. Спевак Н.В. Совершенствование технологического производства компостов с разработкой и обоснованием параметров устройства для измельчения твердых органических удобрений: автореф. дис. ... канд. техн. наук: 05.20.01. Саратов, 2005. 20 с.
- 4. Павленко С.І. Технічне забезпечення технологій прискореного компостування органічних відходів тваринного походження / С.І. Павленко, О.О. Ляшенко, Д.М. Лисенко, В.І. Харитонов // Науковий вісник Луганського національного аграрного університету. Серія: Технічні науки Луганськ: Видавництво ЛНАУ, 2011. №30 С.165-174.
- 5. Павленко С. И. Особенности конструкций мобильных аэраторов-смесителей органических отходов / С.И. Павленко, А.А. Поволоцкий, Ю.А. Филоненко // Перспективные технологии и технические средства в сельскохозяйственном производстве. Материалы Междунар. науч.-практ. конф. (11-12 апреля 2013), Ч.2, Минск. БГАТУ, 2013. С. 192-194.

636.085:7:631.363.21

А.И. Пунько¹, к.т.н. доцент, Г.Г. Тычина², к.т.н., доцент 1 *РУП «НПЦ НАН Беларуси по механизации сельского хозяйства»* 2 *УО «Белорусский государственный аграрный технический*