37. В.В. Михалков «Белорусский государственный аграрный технический университет» г. Минск, Республика Беларусь

МОДИФИКАЦИЯ АВТОМОБИЛЯ МАЗ ДЛЯ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА

Основным фактором развития агропромышленного комплекса является внедрение современных технологий производства сельскохозяйственной продукции. Такие технологии могут быть созданы только на базе высокопроизводительных и надежных комплексов машин, обеспечивающих высококачественное выполнение технологических операций при минимальных затратах ресурсов.

Применение автомобилей MA3-5516 (сельскохозяйственная модификация) в агропромышленном комплексе позволяет осуществлять транспортировку больших объёмов грузов с высокой скоростью по дорогам с усовершенствованным покрытием и грунтовым. Однако использование этих автомобилей на агрофонах с низкой несущей способностью приводит либо к интенсивному колееобразованию (особенно колёсами переднего моста), либо к существенному недоиспользованию полной грузоподъёмности автомобиля.

Это связано с тем, что автомобили в заводской комплектации оборудованы шоссейными шинами 12.00R20, модели Бел-116, которые не рассчитаны для движения по полям с низкой несущей способностью. Глубокое колееобразование и переуплотнение почв сельскохозяйственных угодий на значительных глубинах нарушает их структуру, затрудняет проведение последующих технологических работ на полях, способствует застою воды, вызывает повышенный расход топлива на передвижение автомобилей. Продуктивность участков полей с переуплотненной почвой значительно снижается. Возрастает опасность водной и ветровой эрозии, которая проявляется в виде размывающих водных потоков от атмосферных осадков и в виде пыльных бурь, происходит деградация почвы [1].

С целью изучения возможности создания сельскохозяйственной модификации автомобиля МАЗ была изучена номенклатура продукции, выпускаемой ОАО «МАЗ» [2]. Установлено, что для решения проблемы проходимости автомобилей МАЗ на грунтах с низкой несущей способностью, наиболее целесообразно использовать в качестве базового, шасси автомобиля модели МАЗ-651705.

Этот автомобиль имеет колесную формулу 6×6 , т. е. является полноприводным, на нём в заводской комплектации установлены шины 16.00R20, модели Бел-95, он оборудован системой централизованного регулирования давления воздуха в шинах, его грузоподъемность (как и у автомобиля MA3-5516) составляет 19 тонн.

На этот автомобиль MA3-651705 при его доработке могут быть так же установлены шины 525/70R21 модели Бел-66A, которые имеют наружный диаметр 1285 мм и ширину профиля 525 мм.

При той же вертикальной нагрузке на шину среднее давление на опорную поверхность у шины модели Бел-95 на 40 % меньше, чем у шины модели Бел-116, а у шины модели Бел-66A – на 68% меньше.

При рассмотрении автомобиля МАЗ-651705 как базового, предлагается несколько вариантов его комплектования шинами [3].

Вариант первый. Использование автомобиля MA3-651705 без каких-либо доработок в сравнении с автомобилем MA3-5516 приведет к уменьшению среднего давления под колесами переднего моста на 40 %, но вызовет увеличение давления под колесами задних мостов на 30 % (так как MA3-651705 имеет одинарные колеса).

Вариант второй. Установка на передний мост автомобиля MA3-651705 колес с шинами модели Бел-66A, а на задние мосты – одинарных колес с теми же шинами. Дорожный просвет автомобиля при этом снизится на 29 мм (350 мм у базового

автомобиля). Среднее давление на почву уменьшится на 68 % под колесами переднего моста, а под колесами задних мостов возрастёт на 16 %.

Вариант третий. Оборудование автомобиля MA3-651705 колесами с шинами модели Бел-95 на переднем мосту и сдвоенными колесами с такими же шинами на задних мостах. Это снизит среднее давление на почву под всеми колёсами на 40 % в сравнении с автомобилем MA3-5516. В этом варианте необходима проработка установки сдвоенных колес на задних мостах. Дорожный просвет автомобиля не изменяется.

Вариант четвертый. Установка на передний мост автомобиля MA3-651705 колес с шинами модели Бел-66A, на задние мосты — сдвоенных колес с такими же шинами. При этом среднее давление на почву снизится на 68 % под всеми колесами. Дорожный просвет автомобиля уменьшится на 29 мм по сравнению с базовым автомобилем.

Таким образом, наиболее радикальным решением существующей проблемы будет создание автомобиля MA3 сельскохозяйственной модификации на базе полноприводного автомобиля семейства MA3 с комплектацией его шинами модели Бел-66A, причем колёса задних мостов должны быть сдвоенными. Это позволит снизить среднее давление под колёсами на 68% и при прочих равных условиях суммарная сила тяги возрастет на 29% по сравнению с MA3-5516.

Литература

- 1. Национальная программа действий Республики Беларусь по борьбе с деградацией земель. Раздел «Устойчивое использование и восстановление деградированных торфяников». Минск, 2008.
- 2. http://www.maz.by
- 3. А.И. Бобровник, Ю.М. Жуковский, В.В. Михалков О применении автомобилей МАЗ в агропромышленном комплексе Республики Беларусь./ «Агропанорама», №4, 2012, УО «БГАТУ», с. 2-7.

38. Ю.Д. Карпиевич, И.И. Бондаренко, «Белорусский государственный аграрный технический университет», г. Минск, Республика Беларусь

РАБОТА ТРЕНИЯ ГИДРОПОДЖИМНЫХ МУФТ КОРОБОК ПЕРЕДАЧ

Бортовая диагностика, как элемент конструкции колесных и гусеничных машин позволит перейти к их техническому обслуживанию по фактической необходимости, и за счет этого исключить, с одной стороны, возможность эксплуатации неисправных колесных и гусеничных машин, а с другой — необоснованные простои, материальные и трудовые затраты, например при преждевременной замене гидроподжимных муфт.

Особенности фрикционных муфт- передача крутящего момента за счет сил трения. Поскольку в период буксования муфты имеет место относительное перемещение фрикционных элементов при наличии сил трения, то неизбежен износ рабочих поверхностей муфт.

Износ этот тем интенсивней, чем чаще включается муфта и больше работа трения за одно включение.

Работа трения муфты за одно включение в свою очередь не остается постоянной. Она зависит от вида сельхозоперации, состава агрегата, почвенно-дорожного фона, номера включаемой передачи коробки, квалификации тракториста и др.

Рассмотрим новый метод бортового диагностирования степени износа фрикционных дисков гидроподжимных муфт коробок передач.

Бортовой компьютер, работа которого поддерживается источником питания, постоянно проводит опрос датчиков угловой скорости ведущих и ведомых дисков гидроподжимной муфты коробки передач колесных и гусеничных машин и датчика давления (датчика крутящего момента двигателя внутреннего сгорания), сопоставляет полученные значения с установленными граничными условиями и принимает решение о