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1 INTRODUCTION

In 1857, B. Riemann (see, e.g. [25]) posed the following problem:
to find a system of functions Y (z) = (y1 (z) , . . . , ym (z)), with 3
properties:

1. functions are analytic everywhere in Ĉ except of a finite
number of points a1, a2, . . . , an;

2. the function Y (z) possesses a linear transformation with a
non-singular constant matrix Vk whenever z is traversing around
each singular point ak (k = 1, 2, . . . , n), i.e. Y � VkY , such that
V1 · V2 · . . . · Vn = E;

3. at each singular point ak (k = 1, 2, . . . , n) functions
y1 (z) , y2 (z) , . . . , ym (z) can turn to infinity of a finite order.

Matrices V1, V2, . . . , Vn form a monodromy group. Riemann
showed that, in the neighborhood of each particular point ak the
solution of the problem is

Y (z) = Dk

 (z − ak)µ1k u1 (z)
· · · · · · · · · · · · · · · · · · · · ·
(z − ak)µmk um (z)

 ,

where u1 (z) , . . . , um (z) are analytic functions, uj (ak) 6=
0 (j = 1, . . .m), µjk = 1

2πi lnλjk, λ1k, . . . , λmk are the character-
istic numbers of the matrix Vk (k = 1, . . . n), Dk are matrices
transforming the matrices Vk to a Jordan form. Riemann also
pointed out that the functions y1, . . . , ym will be solutions of an
m-th order complex differential equation with rational coefficients
(see, e.g., [2]). In 1900, Hilbert included the problem of construc-
tion of the differential equation of Fuchsian type as 21-st into the
list of the mathematical problems for XX century. This problem
is known nowadays as the Riemann-Hilbert problem, see [3], [7].
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The Riemann problem can be formulated as the Riemann
boundary value problem for analytic functions (see [22], and
known monographs [20], [27]). Let’s draw a simple closed loop
through singular points. Then bypassing the point ak the follow-
ing transformation yields Y + � V1 ·V2 · . . . ·Vk ·Y + = Y −. Hence
we arrive at the boundary condition

Y + (t) = Ak · Y − (t) , t ∈ (ak, ak+1) , k = 1, . . . n, an+1 = a1,
(1)

where Ak = (V1 · · ·Vk)−1 , An = E. The vector-matrix Riemann
boundary value problem with piece-wise continuous algebraic co-
efficients was first solved by [10] by using Green’s function method.
The solution of the Riemann-Hilbert problem using its reduction
to the Riemann boundary value problem for analytic functions
was proposed in 1908 by Plemelj [23] (see also [24]).

For a long time it was thought that Plemelj had found a
complete and positive answer to the question of existence of the
complex differential equation with a given monodromy group.
Therefore the interest in this problem was moved into the area
of the effective construction of its solution. We have to mention
here the results by Lappo-Danilevsky, Röhrl and Erugin. N.P. Eru-
gin [6] considered the case of four singular points and showed, in
particular, that the Riemann-Hilbert problem is related to the
Penleve type differential equations.

In the late 1980s, Bolibrukh (see e.g. [2]) showed that the
proof of Plemelj is incomplete and that the negative answer is
also possible. An extended description of the modern state of the
Riemann-Hilbert problem as well as the presentation of the main
results by A.Bolibruch is presented in [2] and [3]. We also have to
mention the paper [7] which is devoted to the connection between
the factorization of piece-wise constant n×n matrix functions with

— 81 —



L. KHVOSTCHINSKAYA and S. ROGOSIN

m jumps and the Riemann-Hilbert problem. In studying these re-
lated problems, some results for the partial indices for general n
and m were obtained, including complete answers for n = 2,m = 4
and for n = m = 3. In some cases, the partial indices can be deter-
mined explicitly, while in the remaining cases, there remain two
possibilities. The determination of the correct possibility is equiv-
alent to the description of the monodromy of n-th order linear
Fuchsian differential equations with m singular points.

Despite the fact that more than 160 years have passed since
the statement of the Riemann problem, it has not been completely
solved. This paper presents one of possible directions in the study
of the Riemann problem. In order not to be too cumbersome we
limit our attention to the case of m = 2, i.e. for vector functions
Y (z) = (y1, y2).

2 CONSTRUCTION OF THE CANONICAL MATRIX FOR
THE RIEMANN PROBLEM WITH THREE SINGULAR

POINTS

Before proceeding with the presentation of a solution scheme for
the Riemann problem with an arbitrary number of singular points,
let us show how its solutions are constructed in the case of 3 sin-
gular points a1, a2, a3. Without loss of generality, we assume that
a3 =∞. The question is to find the solution of the homogeneous
Riemann boundary value problem with boundary conditions{

Y + (t) = A1 · Y − (t) , t ∈ (a1, a2) ,
Y + (t) = A2 · Y − (t) , t ∈ (a2,∞) ,

(2)

where A1, A2 are constant non-singular matrices of the 2nd order.
The solution to problem (2) will be sought in the class of functions
that are integrable as z → a1 and z → a2, but almost bounded

— 82 —



FUCHS CLASS

(i.e. bounded or admitting a logarithmic singularity) as z → ∞.
In the selected class, the homogeneous boundary value problem
(2) is always solvable.

Denote by αk, βk the characteristic numbers of matrices Vk =
Ak−1A

−1
k , k = 1, 2, 3, A0 = A3 = E, respectively. For each k =

1, 2, 3 find the numbers

ρk =
1

2πi
lnαk, −1 < Reρk ≤ 0, σk =

1

2πi
ln βk, −1 < Reσk ≤ 0,

∆ =
3∑

k=1

(ρk + σk) , ∆ is an integer, −5 ≤ ∆ ≤ 0.

We look for the solution of problem (2) in the neighborhood of
each singular point in the form

Y (z) =

(
y1(z)
y2(z)

)
= Dk

(
(z − ak)ρk uk (z)
(z − ak)σk vk (z)

)
, k = 1, 2, (3)

Y (z) =

(
y1(z)
y2(z)

)
= D3

(
z−ρ u3 (z)
z−σ v3 (z)

)
, (4)

where Dk (k = 1, 2, 3) transform monodromy matrices Vk to a
normal Jordan form, the functions uk (z) are analytic in a neigh-
borhood of points ak, and the functions vk (z) are either analytic
if ρk 6= σk, or have the form

vk (z) =
1

2πi
ln (z − ak)uk (z) + wk (z) at ρk = σk, k = 1, 2, (5)

v3 (z) =
1

2πi
ln z · u3 (z) + w3 (z) at ρ3 = σ3, (6)

with wk (z) being analytic in the neighborhood of the points ak,
uk (ak) 6= 0, wk (ak) 6= 0, k = 1, 2, 3; ρ = ρ3 + κ1, σ = σ3 + κ2, and
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integers κ1 and κ2 determine the order of the solution at infinity,
which will be maximal if |Re (ρ− σ)| < 1.

In order to solve the homogeneous Riemann boundary value
problem, it is necessary to find the canonical matrix X (z) of
this problem (see [20]). The columns of the matrix X (z) satisfy
the boundary conditions and the matrix X (z) has the following
properties [18]:

1. detX (z) 6= 0 for ∀z 6= ak (k = 1, 2, 3);
2. the columns of the matrix X (z) belong to the selected class

of functions;
3. the order of the determinant X (z) is equal to the sum of

the orders of its columns.
The first two conditions are satisfied by the matrix

X0 (z) =

(
y1 (z − a1) (z − a2) y

′
1

y2 (z − a1) (z − a2) y
′
2

)
.

Taking into account representation (4) we establish that the
order p of the determinant of the matrix X0 (z) is equal p =
Re (ρ+ σ) − 1, and the orders p1 and p2 its columns are equal
p1 = min (Reρ,Reσ), p2 = p1 − 1. Therefore, p = p1 + p2 only in
the case ρ = σ.

Let us consider the matrix

X (z) = X0 (z)

(
1 εz
0 1

)
=

(
y1 εzy1 + (z − a1) (z − a2) y

′
1

y2 εzy2 + (z − a1) (z − a2) y
′
2

)
,

(7)

where ε =

{
ρ, if Reρ ≤ Reσ,
σ, if Reρ ≥ Reσ.

The matrix X (z) has the property 3 of canonical matrices, i.e.
p = p1 + p2. Indeed, let Reρ < Reσ. Then ε = ρ and the order p1

of the first column of the matrix X (z) at infinity will be equal to

— 84 —



FUCHS CLASS

p1 = min (Reρ,Reσ) = Reρ. The order p2 of the second column of
the matrix X (z) at infinity is p2 = min (Reρ,Reσ − 1) = Reσ−1.
Consequently, p = Reρ+Reσ− 1 = p1 + p2 and the matrix X (z)
is the canonical matrix of the problem (2).

Let us find the differential equation to which the matrix satis-
fies X0 (z). By construction, the matrix X0 (z) is a solution to the
boundary value problem (2), i.e.

X+
0 (t) = Ak ·X−0 (t) , t ∈ (ak, ak+1) , k = 1, 2. (8)

where
Ak = X+

0 (t) ·
[
X−0 (t)

]−1
. (9)

Differentiating both parts of the boundary condition (8) and
taking into account (9), we arrive at the boundary condition or
dX+

0

dt = X+
0 ·
[
X−0
]−1 dX−0

dt or[
X−1

0

dX0

dt

]+

=

[
X−1

0

dX0

dt

]−
. (10)

Let us denote p (z) = (z − a1) (z − a2) and consider the matrix

X−1
0 (z) · dX0 (z)

dz
=

1

p (z) (y1y′2 − y2y′1)
·
(
p (z) y′2 −p (z) y′1
−y2 y1

)
×

×
(
y′1 p′ (z) y′1 + p (z) y′′1
y′2 p′ (z) y′2 + p (z) y′′2

)
=

(
0 ϕ1 (z)
1
p(z) ϕ2 (z)

)
, (11)

where the following notation is used ϕ1 (z) := p (z) y
′
2y
′′
1−y′1y′′2

y1y′2−y2y′1
, ϕ2 (z) :=

p′(z)
p(z) + y1y

′′
2−y2y′′1

y1y′2−y2y′1
.

In order to apply to (11) the theorem on analytic continuation
and the generalized Liouville’s theorem we find the main parts of
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the decomposition of the elements of this matrix in the vicinity of
singular points a1, a2, a3 =∞, using formulas (3) – (6).

If ρk 6= σk, k = 1, 2, 3, then in a neighborhood of the point a1

there are representations

ϕ1 (z) =
(a2 − a1) ρ1σ1

z − a1
+ . . . , ϕ2 (z) =

ρ1 + σ1

z − a1
+ . . . .

Similar representations take place in a neighborhood of the
point z = a2

ϕ1 (z) =
(a1 − a2) ρ2σ2

z − a2
+ . . . , ϕ2 (z) =

ρ2 + σ2

z − a2
+ . . . .

In a neighborhood of a point a3 =∞ the functions ϕ1 (z) and
ϕ2 (z) admit the following representation

ϕ1 (z) = −ρσ + . . . , ϕ2 (z) =
1− ρ− σ

z
+ . . . .

Given that res
a1
ϕ2 + res

a2
ϕ2 + res

∞
ϕ2 = 0, we get the following

relation ρ1 + σ1 + ρ2 + σ2 − (1− ρ− σ) = 0 or

ρ1 + σ1 + ρ2 + σ2 + ρ+ σ = 1, (12)

which is called the Fuchs relation.
Since ρ = ρ3 +κ1, σ = σ3 +κ2, then we have

∑3
k=1 (ρk + σk) +

κ1 + κ2 = 1, and thus κ1 + κ2 = 1 − ∆. From the last equality
it follows that the solution Y (z) will have the maximum possible
order at infinity, if we choose the numbers κ1 and κ2 in such a way
that k1 =

[
2−∆

2

]
, k2 =

[
1−∆

2

]
at Reρ3 ≤ Reσ3, k1 =

[
1−∆

2

]
, k2 =[

2−∆
2

]
at Reρ3 ≤ Reσ3. So we have found that

X−1
0 (z) · dX0 (z)

dz
=

(
0 (a2−a1)ρ1σ1

z−a1 + (a1−a2)ρ2σ2
z−a2 − ρσ

1
p(z)

ρ1+σ1
z−a1 + ρ2+σ2

z−a2

)
,
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and the matrix X0 (z) satisfies the differential equation

dX0

dz
= X0

[
U 0

1

z − a1
+

U 0
2

z − a2
+

(
0 −ρσ
0 0

)]
=: X0 (z)U (z) ,

(13)

where U(z) =

(
u11 u12

u21 u22

)
, and the matrix coefficients U 0

1 , U
0
2

are defined by the relations U 0
1 =

(
0 (a2 − a1) ρ1σ1

(a1 − a2)
−1 ρ1 + σ1

)
,

U 0
2 =

(
0 (a1 − a2) ρ2σ2

(a2 − a1)
−1 ρ2 + σ2

)
. We now construct a differ-

ential equation for the canonical matrix (7). Substituting X0 (z) =

X (z) ·
(

1 −εz
0 1

)
, where ε =

{
ρ, if Reρ ≤ Reσ,
σ, if Reρ ≥ Reσ,

into equation

(13) we obtain

dX

dz
·
(

1 −εz
0 1

)
+X(z)

(
0 −ε
0 0

)
= X(z) ·

(
1 εz
0 1

)
U(z),

or

dX

dz
= X(z)

[(
1 −εz
0 1

)
U(z)

(
1 εz
0 1

)
+

(
0 ε
0 0

)(
1 εz
0 1

)]
.

Direct calculations show that(
1 −εz
0 1

)
U 0

1

(
1 εz
0 1

)
=

(
εa1
a2−a1

(ρ1(a1−a2)+εa1)(σ1(a1−a2)+εa1)
a2−a1

1
a1−a2 ρ1 + σ1 + εa1

a1−a2

)
+

+

(
z − a1

a1 − a2

)
·
(
−ε −ε2 (z − a1)− 2a1ε

2 + ε (ρ1 + σ1) (a2 − a1)
0 ε

)
=

= U1 + (z − a1)U
∗
1 ,
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(
1 −εz
0 1

)
U 0

2

(
1 εz
0 1

)
=

(
εa2
a1−a2

(ρ2(a2−a1)+εa2)(σ2(a2−a1)+εa2)
a1−a2

1
a2−a1 ρ2 + σ2 + εa2

a2−a1

)
+

+

(
z − a2

a2 − a1

)
·
(
−ε −ε2 (z − a2)− 2a2ε

2 + ε (ρ2 + σ2) (a1 − a2)
0 ε

)
=

= U2 + (z − a2)U
∗
2 ,(

1 −εz
0 1

)(
0 −ρσ
0 0

)(
1 εz
0 1

)
+

(
0 ε
0 0

)(
1 εz
0 1

)
=

=

(
0 ε− ρσ
0 0

)
= U ∗3 .

Therefore, it follows from (12) that

U ∗1 + U ∗2 + U ∗3 =

(
0 −ε2 + ε (ρ+ σ)− ρσ
0 0

)
=

=

(
0 − (ε− ρ) (ε− σ)
0 0

)
=

(
0 0
0 0

)
,

since either ε = ρ, or ε = σ. Consequently, the canonical ma-
trix X (z) of the boundary value problem (2) is a solution of the
Fuchs’s class equation (a regular system of differential equations)
of the form

dX

dz
= X

[
U1

z − a1
+

U2

z − a2

]
(14)

with matrix coefficients U1, U2:

U1 =
1

a2 − a1

(
εa1 (ρ1 (a1 − a2) + εa1) · (σ1 (a1 − a2) + εa1)
−1 (ρ1 + σ1) (a2 − a1)− εa1

)
,

U2 =
1

a1 − a2

(
εa2 (ρ2 (a2 − a1) + εa2) · (σ2 (a2 − a1) + εa2)
−1 (ρ2 + σ2) (a1 − a2)− εa2

)
,
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where

ε =

{
ρ, if Reρ ≤ Reσ,
σ, if Reρ ≥ Reσ.

From the matrix equation (13) we obtain a second-order differ-
ential equation, whose solutions are components y1 (z) and y2 (z)
of the vector Y (z). The functions of the first and second rows of
the matrix X0 (z) in (13) satisfy the relation(

y′ (p (z) y′)
′
)

=
(
y p (z) y′

)( 0 u12 (z)
u21 (z) u22 (z)

)
,

which yields the system of two equations{
y′ = p (z) y′ · u21 (z) ,
p′ (z) y′ + p (z) y′′ = u12 (z) y + p (z)u22 (z) · y′.

The first equation is satisfied identically, and the second
equation can be rewritten as

y′′ +

(
p′ (z)

p (z)
− u22 (z)

)
y′ − u12 (z)

p (z)
y = 0.

Substituting into the last equation the values of the functions
p (z), u12 (z), u22 (z), we obtain the differential Riemann equation
with singular points a1, a2, and ∞, whose solutions are functions
y1 (z) and y2 (z):

y′′ +

(
1− ρ1 − σ1

z − a1
+

1− ρ2 − σ2

z − a2

)
y′− (15)

− 1

(z − a1) (z − a2)

(
ρσ +

(a1 − a2) ρ1σ1

z − a1
+

(a2 − a1) ρ2σ2

z − a2

)
y = 0.

— 89 —



L. KHVOSTCHINSKAYA and S. ROGOSIN

By linear fractional transformation mapping the points a1, a2,
∞ to 0, 1, ∞, we arrive at the hypergeometric equation

u′′+

(
1 + ρ1 − σ1

z
+

1 + ρ2 − σ2

z − 1

)
u′−(ρ+ ρ1 + ρ2) (σ + ρ1 + ρ2)

z (z − 1)
u = 0

or

z (1− z) u′′ + (c− (a+ b+ 1) z) u′ − ab u = 0, (16)

where a = ρ+ ρ1 + ρ2, b = σ + ρ1 + ρ2, c = 1 + ρ1 − σ1.
The following systems of functions [1] can be taken as a fun-

damental system of solutions uk (z), vk (z), k = 1, 2, 3, to equation
(16) in the vicinity of points a1 = 0, a2 = 1, a3 =∞:

u1 (z) = F (a, b; c; z) ,
v1 (z) = z1−cF (a− c+ 1, b− c+ 1; 2− c; z) , if a c 6= 1 ,

v1 (z) = 1
2πi

(
−u1 (z) ln z +

∞∑
n=0

znψn

)
, if c = 1 ,

(17)

where ψn =
(a)n(b)n

(n!)
2 [2ψ (n+ 1)− ψ (a+ n)− ψ (b+ n)], ψ (z) is

the Euler psi function; F (a, b; c; z) is the hypergeometric function;

u2 (z) = F (a, b; a+ b+ 1− c; 1− z) ,

v2 (z) = (1− z)c−a−b F (c− a, c− b; c+ 1− a− b; 1− z) , if c 6= a+ b,

v2 (z) = 1
2πi

(
−u2 (z) ln (1− z) +

∞∑
n=0

(1− z)n ψn

)
, if c = a+ b,

(18)

u3 (z) = (−z)−a F
(
a, a+ 1− c; a+ 1− b; 1

z

)
,

v3 (z) = (−z)−b F
(
b+ 1− c, b; b+ 1− a; 1

z

)
, if c 6= b,

(19)

v3 (z) =
1

2πi
[u3 (z) ln (−z)+(−z)−a

∞∑
n=0

(a)n (a+ 1− c)n
zn (n!)2 (2ψ (n+ 1)−
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−ψ (a+ n)− ψ (a+ 1− c+ n))], if a = b.

Analytic continuation u1, v1 to the entire complex plane can be
carried out according to formulas [1]:(

u1

v1

)
= Λ1

(
u2

v2

)
= Λ1Λ2

(
u3

v3

)
, (20)

with Λ1 =

(
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

Γ(c)Γ(a+b−c)
Γ(a)Γ(b)

Γ(2−c)Γ(c−a−b)
Γ(1−a)Γ(1−b)

Γ(2−c)Γ(a+b−c)
Γ(a+1−c)Γ(b+1−c)

)
, if ρ1 6= σ1, ρ2 6= σ2,

Λ1 =

(
Γ(1−a−b)

Γ(1−a)Γ(1−b)
Γ(a+b−1)
Γ(a)Γ(b)

Γ(a)Γ(b)
2πiΓ(a+b) 0

)
, if ρ1 = σ1, ρ2 6= σ2,

Λ1 =

(
0 2πiΓ(a+b)

Γ(a)Γ(b)
Γ(a)Γ(b)

Γ(a+b−1)
2i sinπa·sinπb

sinπ(a+b)

)
, if ρ1 6= σ1, ρ2 = σ2,

Λ1 =

(
0 2i sin πa
1

2i sinπa 0

)
, if ρ1 = σ1, ρ2 = σ2.

Λ2 is constructed similarly.
We replace the corresponding entry by zero if the argument

in Gamma-factors in the denominator is a nonpositive integer
number.

Thus, the canonical matrix of the problem (2) in the neigh-
borhood of each singular point a1 = 0, a2 = 1, a3 = ∞ has the
form

X (z) = zρ1 (1− z)ρ2 Dk

(
uk εzuk + z (z − 1)u

′

k

vk εzvk + z (z − 1) v
′

k

)
, (21)

where Dk is the matrix transforming the matrix Vk = Ak−1A
−1
k

to the normal Jordan form, k = 1, 2, 3, A0 = A3 = E, and uk,vk
are the functions defined in (17) – (19). The total index æ of
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the problem, partial indices æ1,æ2 and the number ` of linearly
independent solutions are determined by the formulas

æ = −∆, æ1 =

[
1−∆

2

]
, æ2 =

[
−∆

2

]
, ` = æ + 1. (22)

In order for local solutions (21) to be analytic continuations of

each other, it is necessary to fulfill the conditions Dk

(
uk
vk

)
=

Dk+1

(
uk+1

vk+1

)
, or DkΛk = Dk+1, k = 1, 2. Matrices Dk

(k = 1, 2, 3) have the form Dk = D̃kTk, where Tk =

(
γk 0
0 δk

)
,

if αk 6= βk and Tk =

(
γk 0
δk

γk
αk

)
, if αk = βk, and D̃k is any fixed

matrix performing transformation of the matrix Vk to the normal
Jordan form. At last, the numbers γk, δk are subject to further
definition. Denoting Sk = (sij) = D̃−1

k · D̃k, we find γk and δk from
the system of equations TkΛk = SkTk+1, k = 1, 2.

If ρ1 6= σ1 and ρ2 6= σ2, then this system will take the form(
γ1 0
0 δ1

)(
λ11 λ12

λ21 λ22

)
=

(
s11 s12

s21 s22

)(
γ2 0
0 δ2

)
. (23)

System (23) is solvable under the following condition

λ11λ22s12s21 = λ12λ21s11s22. (24)

If the matrices A1 and A2 are reduced by a similarity transfor-
mation to the triangular form, then the matrix Λ1 has the same
form and condition (24) is satisfied. If the matrices A1 and A2 are
not reduced by a similarity transformation to a triangular shape,
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then condition (24) can be written as λ11λ22
λ12λ21

= s11s22
s12s21

or

sin π (c− a) sin π (c− b)
sinπa sin πb

=
α3 + β3 − (α1β2 + β1α2)α3β3

α3 + β3 − (α1α2 + β1β2)α3β3
. (25)

Direct verification ensures that equality (25) is an identity.
From system (23) we find that as γ1, δ1 and γ2, δ2 we can take

any pairs of numbers that satisfy the relations γ1
δ1

= s11
s21
· λ21λ11

=
s12
s22
· λ22λ12

, γ2
δ2

= s12
s11
· λ11λ12

= s22
s21
· λ21λ22

. Similarly, we find the relations

between γk and δk in cases when any of the matrices Vk (k = 1, 2)
is reduced to a triangular Jordan form. For example,

γ1 = (s11−β2)Γ(2−c)
Γ(1−a)Γ(1−b) , δ1 = s21Γ(c)

Γ(c−a)Γ(c−b) , if ρ1 6= σ1, ρ2 6= σ2,

γ1 = Γ2 (a) Γ2 (b)S12, δ1 = 2πi
a+bΓ

2 (a+ b)α2, if ρ1 6= σ1, ρ2 = σ2,
γ1 = s11 − α2, δ1 = s12 or γ1 = s12, δ1 = s22 − α2 if ρ1 = σ1.

3 TRANSFORMATION OF DIFFERENTIAL MATRICES
AND THE METHOD OF LOGARITHMIZATION OF

MATRIX PRODUCT

Let V1, V2 be constant non-degenerate matrices of the 2nd order.
Equality ln (V1V2) = lnV1 + lnV2 is valid only for transitive ma-
trices. We derive a formula connecting the logarithms of matrices
V1, V2 and V3 = V1 V2 in the case of non-commuting matrices. De-
note by αk, βk the characteristic numbers of matrices Vk, and by
ρk = 1

2πi lnαk, σk = 1
2πi ln βk the characteristic numbers of matri-

ces Wk = 1
2πi lnUk, k = 1, 2,3. Fix any branches of logarithms ρ1,

σ1, ρ2, σ2 so that |Re (ρk − σk)| < 1, k = 1, 2. Then the branches
of logarithms for ρ3, σ3 should be consistent with, and selected
from, the condition ρ1 + σ1 + ρ2 + σ2 = ρ3 + σ3.

Let ρ3 6= σ3. Imagine the matrix S =

(
ρ3 0
0 σ3

)
as the sum

of two matrices S = S1 + S2, where Sk ∼ Wk, k = 1, 2. The last
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equality can be written as(
ρ3 0
0 σ3

)
=

(
s1 c
d ρ1 + σ1 − s1

)
+

(
s2 −c
−d ρ2 + σ2 − s2

)
,

which is equivalent to a system of 4 equations:

s1 + s2 = ρ3, ρ1 + σ1 + ρ2 + σ2 − s1 − s2 = σ3,

s1 (ρ1 + σ1 − s1)− cd = ρ1σ1, s2 (ρ2 + σ2 − s2)− cd = ρ2σ2.

Subtracting from the 3rd equation of the 4th, we obtain a
system for determining s1 and s2:{

s1 (ρ1 + σ1)− s2
1 − s2 (ρ2 + σ2) + s2

2 = ρ1σ1 − ρ2σ2,
s1 + s2 = ρ3,

or {
s1 (ρ1 + σ1 − ρ3)− s2 (ρ2 + σ2 − ρ3) = ρ1σ1 − ρ2σ2,
s1 + s2 = ρ3,

Thus

s1 =
ρ1σ1 − (ρ3 − ρ2) (ρ3 − σ2)

σ3 − ρ3
, s2 =

ρ2σ2 + (ρ3 − ρ1) (ρ3 − σ1)

σ3 − ρ3
.

Therefore

c · d = s1 (ρ1 + σ1 − s1)− ρ1σ1 = − (s1 − ρ1) (s1 − σ1) =

= − [(ρ3 − ρ1) (σ3 − σ1)− ρ2σ2] [(σ3 − ρ1) (ρ3 − σ1)− ρ2σ2]

(σ3 − ρ3)
2 .

Thus, the following matrix representation is obtained:

S =

(
ρ3 0
0 σ3

)
=

(
ρ1σ1−(ρ3−ρ2)(ρ3−σ2)

σ3−ρ3
(ρ3−ρ1)(σ3−σ1)−ρ2σ2

σ3−ρ3 A
ρ2σ2−(ρ3−σ1)(σ3−ρ1)

A(σ3−ρ3)
(σ3−ρ2)(σ3−σ2)−ρ1σ1

σ3−ρ3

)
+
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+

(
ρ2σ2+(ρ3−ρ1)(ρ3−σ1)

σ3−ρ3
ρ2σ2−(ρ3−ρ1)(σ3−σ1)

σ3−ρ3 A
(ρ3−σ1)(σ3−ρ1)−ρ2σ2

A(σ3−ρ3)
(σ3−ρ1)(σ3−σ1)−ρ2σ2

σ3−ρ3

)
(26)

moreover, this representation, up to a similarity transformation
using a diagonal matrix, is unique ( c - an arbitrary constant,

c 6= 0), if ρ3 = σ3. Then the matrix representation S =

(
ρ3 0
1 ρ3

)
as the sum of two matrices similar Wk, k = 1, 2, given in [11]. Later
it turned out that we only need to use the decomposition (26).

Let us return to equation (14) and show another way of con-
structing differential matrices U1, U2. For definiteness, we assume
ε = ρ and find the sum of matrices U1 and U2:

U1 + U2 =

(
−ρ µ
0 1− σ

)
, (27)

µ = −a1 [(ρ+ ρ1) (ρ+ σ1)− ρ2σ2] − a2 [(ρ+ ρ2) (ρ+ σ2)− ρ1σ1].
Due to the choice of logarithms for numbers ρ and σ the el-
ements standing on the main diagonal of the matrix (27), are
different. From formulas (19), in particular, it follows that even
in the case of α3 = β3 equality is valid ρ = σ, otherwise func-
tion v3 (z) when traversing around a point a3 = ∞ will be not
transformed linearly. Therefore, the matrix (26) can always be

diagonalized S̃ =

(
−ρ 0
0 1− σ

)
using similarity transformation

D =

(
1 µ/(σ − ρ− 1)
0 c

)
. Matrix representation S̃ we obtain

from formula (26), replacing it ρ3 by −ρ, σ3 by 1− σ:

S̃ = S̃1 + S̃2, (28)
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S̃1 =

(
ρ1σ1−(ρ+ρ2)(ρ+σ2)

1+ρ−σ
(ρ+ρ1)(σ+σ1−1)−ρ2σ2

1+ρ−σ A
ρ2σ2−(ρ+σ1)(σ+ρ1−1)

A(1+ρ−σ)
(σ+ρ2−1)(σ+σ2−1)−ρ1σ1

1+ρ−σ

)
, S̃1 ∼ W1,

S̃2 =

(
ρ2σ2−(ρ+ρ1)(ρ+σ1)

1+ρ−σ
(ρ+ρ2)(σ+σ2−1)−ρ1σ1

1+ρ−σ A
ρ1σ1−(ρ+σ2)(σ+ρ2−1)

A(1+ρ−σ)
(σ+ρ1−1)(σ+σ1−1)−ρ2σ2

1+ρ−σ

)
, S̃2 ∼ W2.

Multiplying by the matrix D both sides of equation (14) on the

left, we come to the equation d
dz (Y D) = (Y D)

[
D−1U1D
z−a1 + D−1U2D

z−a2

]
or

dỸ

dz
= Ỹ

[
Ũ1

z − a1
+

Ũ2

z − a2

]
, (29)

where Ỹ = Y D, Ũ1 = S̃1, Ũ2 = S̃2. Thus, the right side of (28) is
the sum of the differential matrices Ũ1 and Ũ2 of equation (29).

In what follows, we use formula (28) to solve the Riemann
problem with four or even more singular points.

4 LOGARITHMIZATION OF THE PRODUCT OF THREE
MATRICES OF THE SECOND ORDER

Let V1, V2, V3 be constant nonsingular matrices of the 2nd or-
der, V4 = V1V2V3. Denote by αk, βk the characteristic numbers of
matrices Vk, and by ρk = 1

2πi lnαk, σk = 1
2πi ln βk the characteris-

tic numbers of matrices Wk = 1
2πi lnUk, k = 1, . . . , 4, where the

branches of logarithms satisfy the conditions |Re (ρk − σk)| < 1
and

∑3
k=1 (ρk + σk) = ρ4 + σ4.

Let ρ4 6= σ4. Then the matrix W4 is reduced to a diagonal

Jordan form S4 =

(
ρ4 0
0 σ4

)
. Let the matrix S4 be a sum of
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three matrices

S4 = S1 + S2 + S3 =
3∑

k=1

(
sk ck
dk s′k

)
, (30)

where Sk ∼ Wk, s′k = ρk + σk − sk, ckdk = sks
′
k − ρkσk =

− (sk − ρk) (sk − σk), k = 1, 2, 3,
∑3

k=1 sk = ρ4,
∑3

k=1 s
′
k = σ4,∑3

k=1 ck = 0,
∑3

k=1 dk = 0.
We write the product of matrices V1 · V2 · V3 in the form of

multiplication of two matrices as follows:

V4 = V1 · V2 · V3 = V1 · (V2 · V3) = V1 · V23, (31)

V4 = V1 · V2 · V3 = (V1 · V2) · V3 = V12 · V3. (32)

Denote by α12, β12 and α23, β23 the characteristic numbers of
matrices V12 and V23, ρ12 = 1

2πi lnα12, σ12 = 1
2πi ln β12, ρ23 =

1
2πi lnα23, σ23 = 1

2πi ln β23, whose branches are chosen according
to the relations

ρ12 + σ12 = ρ1 + σ1 + ρ2 + σ2, |Re (ρ12 − σ12)| < 1,

ρ23 + σ23 = ρ2 + σ2 + ρ3 + σ3, |Re (ρ23 − σ23)| < 1.

Applying to (31) and (32) to formula (26) for the logarithm of
two matrices, we obtain two representations of the matrix S4:

S4 = S1 +S2 +S3 = S1 +S23 =

(
s1 c1

d1 s′1

)
+

(
ρ4 − s1 −c1

−d1 σ4 − s′1

)
,

(33)

S4 = S1 +S2 +S3 = S12 +S3 =

(
ρ4 − s3 −c3

−d3 σ4 − s′3

)
+

(
s3 c3

d3 s′3

)
,

(34)
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where

s1 =
1

σ4 − ρ4
[ρ1σ1 − (ρ4 − ρ23) (ρ4 − σ23)] =

=
1

σ4 − ρ4
[ρ4 (σ4 − ρ1 − σ1) + ρ1σ1 − ρ23σ23] ,

s3 =
1

σ4 − ρ4
[ρ3σ3 − (ρ4 − ρ12) (ρ4 − σ12)] =

=
1

σ4 − ρ4
[ρ4 (σ4 − ρ3 − σ3) + ρ3σ3 − ρ12σ12] ,

S12 ∼ 1
2πi ln (V1 · V2), S23 ∼ 1

2πi ln (V2 · V3) . From (33) and (34) it
follows that S1 +S2 = S12 and S2 +S3 = S23 ⇒ S2 = S12−S1 =

S23 − S3 or

(
s2 c2

d2 s′2

)
=

(
ρ4 − s3 − s1 −c3 − c1

−d3 − d1 σ4 − s′3 − s′1

)
. Hence

s2 = ρ4 − s1 − s3 =
1

σ4 − ρ4
[ρ4 (σ4 − ρ4)−

−ρ4 (2σ4 − ρ1 − σ1 − ρ3 − σ3)− ρ1σ1 − ρ3σ3 + ρ12σ12 + ρ23σ23] =

=
1

σ4 − ρ4
[−ρ4 (ρ2 − σ2)− ρ1σ1 − ρ3σ3 + ρ12σ12 + ρ23σ23] , (35)

s2s
′
2 − (c1 + c3) (d1 + d3) = ρ2σ2. (36)

Let us transform formula (35) using the identity for the
determinant of the sum of three matrices of the 2nd order:
D (S1 + S2 + S3) = D (S1 + S2) + D (S1 + S3) + D (S2 + S3) −
D (S1) − D (S2) − D (S3) or ρ4σ4 = ρ12σ12 + ρ13σ13 + ρ23σ23 −
ρ1σ1 − ρ2σ2 − ρ3σ3. Denote

τ3 = ρ12σ12, τ1 = ρ23σ23, τ2 = ρ13σ13 =
4∑

k=1

ρkσk − τ1 − τ3. (37)
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Given (37), formula (35) can be written as

s2 =
1

σ4 − ρ4
[−ρ4 (ρ2 − σ2) + ρ1σ4 + ρ2σ2 − ρ13σ13] =

=
1

σ4 − ρ4
[ρ4 (σ4 − ρ2 − σ2) + ρ2σ2 − τ2] .

Let us transform formula (36), linking constants c1, c3, d1, d3.
Denoting γk = − (sk − ρk) (sk − σk) , and taking into account
ckdk = sks

′
k − ρkσk = − (sk − ρk) (sk − σk) = γk, we rewrite (36)

in the form γ2 − γ1 − c3d1 − c1d3 − γ3 = 0 ⇒

γ2 − γ1 − γ3 − c3
γ1

c1
− c1

γ3

c3
= 0 (c1 6= 0, c3 6= 0) , (38)

γ2 − γ1 − γ3 −
γ3

d3
d1 −

γ1

d1
d3 = 0 (d1 6= 0, d3 6= 0) . (39)

Denoting in (38) τ = c3
c1

or in (39) τ = d3
d1

, we arrive at a
quadratic equation with respect to τ :

γ1 τ
2 + (γ1 + γ3 − γ2 ) τ + γ3 = 0. (40)

Hence

τ =
1

2γ1

(
γ2 − γ1 − γ3 ±

√
γ2

1 + γ2
2 + γ2

3 − 2 (γ1γ2 + γ1γ3 + γ2γ3)

)
,

for γ1 6= 0 and τ = γ3
γ2−γ3 for γ1 = 0.

Knowing the parameter τ , we can find items ck, dk matrices
Sk, k = 1, 2, 3.

If τ = c3
c1

, then c1 = c, c3 = τc, c2 = − (c1 + c3) =

− (1 + τ) c, d1 = γ1
c , d2 = − γ2

(1+τ)c , d3 = γ3
c , where c – arbitrary

constant, c 6= 0.

— 99 —



L. KHVOSTCHINSKAYA and S. ROGOSIN

If τ = d3
d1

, then d1 = d, d3 = τd, d2 = − (d1 + d3) =

− (1 + τ) d, c1 = γ1
d , c2 = − γ2

(1+τ)d , d3 = γ3
d , when d – arbitrary

constant, d 6= 0.
Thus, we have the representations of the Jordan form of the

logarithm of the product of three non-singular 2nd order matrices:(
ρ4 0
0 σ4

)
=

(
s1 c
γ1
c ρ1 + σ1 − s1

)
+

(
s2 − (1 + τ) c
−γ2

(1+τ)c ρ2 + σ2 − s2

)
+

(41)

+

(
s3 τc
γ3
τc ρ3 + σ3 − s3

)
,

(
ρ4 0
0 σ4

)
=

(
s1

γ1
d

d ρ1 + σ1 − s1

)
+

(
s2

−γ2
(1+τ)d

− (1 + τ) d ρ2 + σ2 − s2

)
+

(42)

+

(
s3

γ3
τd

τd ρ3 + σ3 − s3

)
,

sk = 1
σ4−ρ4 [ρ4 (σ4 − ρk − σk) + ρkσk − τk], γk = − (sk − ρk) (sk − σk),

τk are defined by the formulas (37), τ is determined from equation
(40), c and d are arbitrary constants.

Representations (41) and (42), are, in general, equivalent. If
the matrix D4, transforms V4 to the Jordan form, and any of the
matrices Vk (k = 1, 2, 3) are transformed to the triangular form,
then γk = 0 and we can choose one of the representations that
corresponds to the form of a triangular matrix (upper or lower
triangular form).

Both (41) and (42) represent the logarithm of the product of
three matrices of the second order as a sum of matrices similar
to the logarithms of the matrices of factors. It is unique up to a
similarity transformation by a diagonal matrix.
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If γ1 = − (s1 − ρ1) (s1 − σ1) = 0, then c1d1 = 0. The following
simpler matrix representations are possible S4:

S4 =

(
ρ1 0

(γ2−γ3)
c σ1

)
+

(
s2 −c
−γ2
c ρ2 + σ2 − s2

)
+

(
s3 c
γ3
c ρ3 + σ3 − s3

)
,

S4 =

(
ρ1

γ2−γ3
d

0 σ1

)
+

(
s2

−γ2
d

−d ρ2 + σ2 − s2

)
+

(
s3

γ3
d

d ρ3 + σ3 − s3

)
,

S4 =

(
ρ1 0
0 σ1

)
+

(
s2

−γ3
d

−d ρ2 + σ2 − s2

)
+

(
s3

γ3
d

d ρ3 + σ3 − s3

)
.

Similar representations occur in cases γ2 = 0, γ3 = 0.

5 CONSTRUCTION OF THE CANONIC MATRIX FOR THE
RIEMANN PROBLEM WITH FOUR SINGULAR POINTS

A differential equation of Fuchs class with differential matrices
(42) has the form

dY

dz
= Y

3∑
k=1

Sk
z − ak

or
dY

dz
= Y S (z) , (43)

where Y (z) = (yij), S (z) = (sij) is the 2nd order matrix with

elements s11 =
∑3

k=1
sk

z−ak , s12 =
∑3

k=1
ck

z−ak , s22 =
∑3

k=1
s′k

z−ak =∑3
k=1

ρk−σk−sk
z−ak , s21 =

∑3
k=1

dk
z−ak = d(a1−a2+τ(a3−a2))(z−b)∏3

k=1(z−ak)
, if dk 6=

0, k = 1, 2, 3, and

b :=
a3 (a1 − a2) + τ a1 (a3 − a2)

a1 − a2 + τ (a3 − a2)
, (44)

where τ 6= a1−a2
a2−a3 .
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If d1 = 0, then d2 + d3 = 0 and s21 = d2
z−a2 −

d2
z−a3 = d2(a2−a3)

(z−a2)(z−a3) .

If d2 = 0, then d1 + d3 = 0 and s21 = d1(a1−a3)
(z−a1)(z−a3) .

If d3 = 0, then d1 + d2 = 0 and s21 = d1(a1−a2)
(z−a1)(z−a2) .

If τ = a1−a2
a2−a3 , then s21 = d(a2−a1)(a3−a1)

(z−a1)(z−a2)(z−a3) .

Equation (43) for matrix Y (z) leads to two systems of
equations {

y′11 = s11y11 + s21y12,
y′12 = s12y11 + s22y12.

(45){
y′21 = s11y21 + s21y22,
y′22 = s12y21 + s22y22.

(46)

By expressing y12 from the first equation of system (45)

y12 =
1

s21
(y′11 − s11y11) (47)

and substituting it into the second equation, we obtain the
differential equation of the 2nd order

y′′−
(
s11 + s22 +

s′21

s21

)
y′+

(
s11s22 − s12s21 − s′11 +

s′21

s21
s11

)
y = 0.

(48)
From system (46) we conclude that y21 is also a solution to

equation (48).

If b 6= ak, then s′21
s21

= (ln s21)
′
= 1

z−b −
3∑

k=1

1
z−ak ,

s11+s22+
s′21

s21
=

3∑
k=1

sk + s′k − 1

z − ak
+

1

z − b
=

3∑
k=1

ρk + σk − 1

z − ak
+

1

z − b
,

s11s22 − s12s21 − s′11 +
s′21

s21
s11 =

1
3∏

k=1

(z − ak)

[
ρ4 (σ4 − 1) z + ρ4b+
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+
3∑

k=1

(ρkσk − τk) ak +
q

z − b
+

3∑
k=1

ρkσk
z − ak

3∏
j=1
j 6=k

(ak − aj)
]
,

q = s1 (b− a2) (b− a3)+s2 (b− a1) (b− a3)+s3 (b− a1) (b− a2) =

1
σ4−ρ4

∑3
k=1 (ρ4 (σ4 − ρk − σk) + ρkσk − τk)

3∏
j=1
j 6=k

(b− aj) .

So the functions y11 and y12 are the fundamental system of
solutions of a differential equation of the Fuchs class of the 2nd
order:

y′′+

(
3∑

k=1

1− ρk − σk
z − ak

− 1

z − b

)
y′+

1
3∏

k=1

(z − ak)

[
ρ4 (σ4 − 1) z+bρ4+

+
3∑

k=1

(ρkσk − τk) ak+
q

z − b
+

3∑
k=1

ρkσk
z − ak

3∏
j=1
j 6=k

(ak − aj)
]
y = 0. (49)

(49) corresponds to the symbol P =

 a1 a2 a3 b ∞
ρ1 ρ2 ρ3 0 −ρ4

σ1 σ2 σ3 2 1− σ4

z


(so called Riemann symbo). Denote ρ = −ρ4, σ = 1− σ4, rewrite
equation (50) in the ”standard” form

y′′ +

(
3∑

k=1

1− ρk − σk
z − ak

− 1

z − b

)
y′ +

1
3∏

k=1

(z − ak)

[
ρσz − bρ+

+
3∑

k=1

(ρkσk − τk) ak+
q

z − b
+

3∑
k=1

ρkσk
z − ak

3∏
j=1
j 6=k

(ak − aj)
]
y = 0, (50)
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q =
1

1 + ρ− σ

3∑
k=1

(ρ (σ + ρk + σk − 1) + ρkσk − τk)
3∏
j=1
j 6=k

(b− aj) ,

(51)
ρ1 + σ1 + ρ2 + σ2 + ρ3 + σ3 + ρ+ σ = 1 is the Fuchs relation. As in
the case of three singular points, it is proved that all the formulas
and equations obtained here remain valid regardless of the form
of the Jordan form of the matrix V4.

Consider some particular cases of equation (50).

If d1 = 0 (γ1 = 0 and matrix S1 is upper triangular), then s′21
s21

=

1
z−a2 + 1

z−a3 , s11 + s22 + s′21
s21

=
3∑

k=1

ρk+σk
z−ak −

1
z−a2 −

1
z−a3 = ρ1+σ1

z−a1 +

ρ2+σ2−1
z−a2 + ρ3+σ3−1

z−a3 , i.e. in equation (50) should be put b = a1, q =

ρ1 (a1 − a2) (a1 − a3).
If d2 = 0 (γ2 = 0), then in equation (50) we assume b = a2, q =
ρ2 (a2 − a1) (a2 − a3).
If d3 = 0 (γ3 = 0), then in equation (50) we assume b = a3, q =
ρ3 (a3 − a1) (a3 − a2).
If τ = a1−a2

a2−a3 , it is enough to go to the limit in equation (50) at
b→∞, and the differential equation takes the form

y′′ +
3∑

k=1

1− ρk − σk
z − ak

y′ +
1

3∏
k=1

(z − ak)

[
ρ (σ + 1) z+

+
3∑

k=1

(ρkσk − ρ− τk) ak +
3∑

k=1

ρkσk
z − ak

3∏
j=1
j 6=k

(ak − aj)
]
y = 0.
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In the neighborhood of each singular point ak, k = 1, . . . , 4,
equation (50) has two linearly independent solutions

uk (z) = (z − ak)ρk
∞∑
n=0

B(k)
n (z − ak)n , (52)

vk (z) = (z − ak)σk
∞∑
n=0

C
(k)
n (z − ak)n at ρk 6= σk or vk (z) =

1
2πi ln (z − ak) uk (z) + wk (z) at ρk = σk (k = 1, 2, 3) ,

u4 (z) = z−ρ
∞∑
n=0

B(4)
n z−n, (53)

v4 (z) = z−σ
∞∑
n=0

C
(4)
n z−n at ρ 6= σ or v4 (z) = − 1

2πi ln z u4 (z) +

w4 (z) at ρ = σ, wk (z) (k = 1, . . . , 4) – holomorphic in neigh-

borhoods of points ak. Coefficients B
(k)
n , C

(4)
n he series (41), (42)

after substituting these series in equation (40) are found from
the recurrence relations. In the vicinity of the point z = b
the equation has 2 linearly independent solutions of the form

ub (z) =
∞∑
n=0

B
(b)
n (z − b)n and vb (z) = (z − b)2

∞∑
n=0

C
(b)
n (z − b)n.

Substituting s21 and s11 in (47), we obtain y12 =

1
d r

3∏
k=1

(z − ak)
(
y′11 −

3∑
k=1

sk
z−ak y11

)
, with r = a1−a2 +τ (a3 − a2).

Similarly, y22 = 1
d r

3∏
k=1

(z−ak)

z−b

(
y′21 −

3∑
k=1

sk
z−ak y21

)
.
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Therefore, if y1, y2 is the fundamental system of solutions to
(50), then the solution Y (z) to system (43) can be written as

Y (z) =


y1

3∏
k=1

(z−ak)

z−b

(
y′1 −

3∑
k=1

sk
z−ak y1

)
y2

3∏
k=1

(z−ak)

z−b

(
y′2 −

3∑
k=1

sk
z−ak y2

)

(

1 0
0 d r

)
= (54)

= X (z)

(
1 0
0 d r

)
.

Order p matrix determinant X (z) equals p = Reρ+Reσ − 1.
Order p1 the first column of the matrix X (z) equals p1 =
min {Reρ,Reσ} = Reρ. Because the s1 + s2 + s3 = ρ4 =
−ρ, that order p2 second column matrix X (z) equals p2 =
min {Reρ,Reσ − 1} = Reσ − 1, i.e. p = p1 + p2. Therefore,
the matrix X (z) is the canonical matrix of the boundary value
problem

Y + (t) = AkY
− (t) , t ∈ (ak, ak+1) , k = 1, 2, 3, a4 =∞, (55)

A1 = V −1
1 , A2 = (V1 · V2)

−1 , A3 = (V1 · V2 · V3)
−1 .

Using formula (54) we rewrite the differential equation (43) in
the form

dX

dz
= X

3∑
k=1

Uk
z − ak

, (56)

U1 =

(
s1 γ1r

1/r ρ1 + σ1 − s1

)
, U2 =

(
s2 −γ2r/ (1 + τ)

− (τ + 1) /r ρ2 + σ2 − s2

)
,

U3 =

(
s3 γ3r/τ
τ/r ρ3 + σ3 − s3

)
, r = a1 − a2 + τ (a3 − a2) , r 6= 0.
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In [12] the matrixX∗ (z) =

 y1

3∏
k=1

(z−ak)

z−b y′1 +
(
ρ z − q

z−b y1

)
y2

3∏
k=1

(z−ak)

z−b y′2 +
(
ρ z − q

z−b y1

)


is taken as the canonical matrix for the differential equation

dX∗

dz
= X∗

3∑
k=1

U ∗k
z − ak

(57)

with U ∗k =

(
−ηk (ηk+ρk)(ηk+σk)

(b−ak)ωk

(ak − b)ωk ηk + ρk + σk

)
, ωk = 1

3∏
j=1
j 6=k

(ak−aj)
, ηk =

[ρak (ak − b)− q]ωk, k = 1, 2, 3, U ∗1 +U ∗2 +U ∗3 =

(
−ρ θ
0 1− σ

)
,

θ =
3∑

k=1

(ηk + ρk) (ηk + σk)

(b− ak)ωk
.

A differential equation of the form (with unknown (accessory)
parameters b and q)

y′′ +

(
3∑

k=1

1− ρk − σk
z − ak

− 1

z − b

)
y′+

+
1

3∏
k=1

(z − ak)

[ q

z − b
− q2

3∏
k=1

(b− ak)
+ q

3∑
k=1

ρk + σk
b− ak

+
3∑

k=1

ρkσk
ak − b

3∏
j=1
j 6=k

(ak − aj) +
3∑

k=1

ρkσk
z − ak

3∏
j=1
j 6=k

(ak − aj)
]
y = 0,

(58)
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was obtained for functions y1, y2. In [16] formulas are proposed
for determining the parameters b and q, which coincide with for-
mulas (44) and (51). Direct calculations show that when replacing

X∗ (z) = X (z) ·
(

1 θ
σ−ρ−1

0 1

)
we arrive at the equation for the

function X (z), coinciding with equation (56). Substituting the
values q from (51) in equation (58), we obtain equation (50), which
confirms the previously obtained results.

Equation (50) can be simplified by replacing y =
3∏

k=1

(z − ak)ρk w. Then the function w will satisfy an equation of

the form (50), where it should be replaced

ρk → 0, σk → σk − ρk, ρ→ ρ+
3∑

k=1

ρk = ρ∗, σ → σ +
3∑

k=1

ρk = σ∗,

τ1 → τ1 − (ρ2 + ρ3) (σ2 + σ3) = τ ∗1 , τ2 → τ2 − (ρ1 + ρ3) (σ1 + σ3) = τ ∗2 ,
τ3 → τ3 − (ρ1 + ρ2) (σ1 + σ2) = τ ∗3 ,

q → 1
1+ρ−σ

3∑
k=1

[(ρ+ ρk) (σ − σk − 1)− τk]
3∏
j=1
j 6=k

(b− aj) = q∗.

(59)
This equation has then the form

w′′+

(
3∑

k=1

1 + ρk − σk
z − ak

− 1

z − b

)
w′+

1
3∏

k=1

(z − ak)

(
ρ∗σ∗z− b ρ∗−

(60)

−
3∑

k=1

τ ∗kak +
q∗

z − b

)
w = 0.

Therefore, as the canonical matrix of problem (55) in the neigh-
borhood of each singular point ak, k = 1, ..., 4, we can take the
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matrix

X (z) =
3∏

k=1

(z − ak)ρk Dk


u∗k

3∏
k=1

(z−ak)

z−b

(
u∗
′

k −
3∑

k=1

s∗k
z−ak u

∗
k

)
v∗k

3∏
k=1

(z−ak)

z−b

(
v∗
′

k −
3∑

k=1

s∗k
z−ak v

∗
k

)
 ,

where Dk is the matrix transforming Vk to normal Jordan form,
u∗k, v

∗
k is the fundamental solution system of equation (60) in the

neighborhood of a singular point ak, whose parameters are found
by formulas (59), s∗k = 1

1+ρ−σ [(ρ+ ρk) (σ + σk − 1)− τk] , k =

1, 2, 3. The homogeneous boundary value problem (55) will be
unconditionally solvable if the branches of logarithms ρk, σk char-
acteristic numbers αk, βk matrices Vk = Ak−1A

−1
k , k = 1, ..., 4

choose from conditions −1 < Reρk ≤ 0, −1 < Reσk ≤ 0. Then,

denoting ∆ =
4∑

k=1

(ρk + σk) (∆ − integer, −7 ≤ ∆ ≤ 0), numbers

ρ and σ more convenient to find the formula ρ = ρ4 +
[

1−∆
2

]
, σ =

σ4 +
[

2−∆
2

]
, if Reρ4 ≥ Reσ4,ρ = ρ4 +

[
2−∆

2

]
, σ = σ4 +

[
1−∆

2

]
, if

Reρ4 ≤ Reσ4. The total index χ of the problem (55), partial in-
dices χ1, χ2 and the number ` of linearly independent solutions
are found by the formulas (22). The gluing together of local solu-
tions is performed in the same way as in the case of three singular
points [12].

The method of logarithmization of the product of matrices that
we considered was applied in solving one hydrodynamic problem
[14] and solving the integral equation of Carleman type on the
pair disjoint segments [15]. The scheme of applying this method
for the case of five singular points is given in [16], [17].
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