АКТИВАЦИЯ ЖИДКИХ СРЕД В ПРОЦЕССАХ МОЙКИ И ОБЕЗЗАРАЖИВАНИЯ ПЛОДООВОЩНОЙ ПРОДУКЦИИ

В.С. Корко, канд. техн. наук, доцент, П.В. Кардашов, канд. техн. наук, доцент, И.Б. Дубодел, канд. техн. наук, доцент, Д.М. Литвинюк, студент

БГАТУ, г. Минск, Республика Беларусь

Аннотация. Рассмотрены методы активации жидких сред в технологических процессах мойки и обеззараживания плодоовощной продукции.

Abstract. Methods of activation of liquid media in technological processes of washing and disinfection of fruit and vegetable products are considered.

Ключевые слова: жидкость, моющий раствор, активация, овощи, загрязнения, очистка, мойка, обеззараживание.

Keywords: liquid, detergent solution, activation, vegetables, pollution, cleaning, washing, disinfection.

Введение

С натуральной плодоовощной продукцией и после ее переработки в организм человека могут попадать различные вредные вещества, токсины различной природы: механические (почва, остатки удобрений, экскременты птиц, насекомых, защитные покрытия), химические (токсичные металлы, пестициды, соединения азота, консерванты, гормональные препараты и т.п.), биологические (микроорганизмы, вирусы, насекомые, микотоксины и др.). Основная масса природных и техногенных загрязнений, а также защитных покрытий (воска, парафина и т.п.) находится в кожуре или на ее поверхности, поэтому начальным этапом промышленной и кулинарной переработки плодоовощной продукции является очистка, мойка водой, обеззараживание различными растворами, содержащими химические реагенты, поверхностно-активные вещества и т.п. [1].

Основная часть

Активацию воды и водных растворов можно провести с помощью физических, химических или биологических методов. Среди физических методов наиболее эффективны воздействия магнитным и акустическим полем, ультрафиолетовым и лазерным излучением, путем электролиза, вакуумированием и др. [2, 3].

Нашими исследованиями установлены технологические основы применения и доказана высокая эффективность ультразвуковой и электрохимической активации жидких сред в процессах обработки плодоовощной продукции, кормоприготовления, стимулирования всхожести семян и др.

При прохождении ультразвука в жидкостях, биологических объектах частицы среды совершают интенсивные колебательные движения с большими ускорениями. При этом на расстояниях, равных половине длины звуковой волны, в облучаемой среде могут возникать значительные разности давлений и сопутствующие механические, термические и физикохимические явления, в частности акустическая кавитация, интенсивное перемешивание, переменное движение частиц, интенсификация химических реакций, массообменных процессов и т.п.

Ультразвуковая кавитация представляет собой эффективное средство концентрации энергии акустической волны низкой плотности в высокую плотность энергии, связанную с пульсациями и захлопыванием кавитационных пузырьков.

Нашими исследованиями установлено, что в процессе ультразвуковой обработки различной плодоовощной продукции в жидких средах поверхности эффективно очищаются как от механических, так и от бактериальных загрязнений, в том числе в труднодоступных местах (порах, трещинах, углублениях), происходит дополнительное обеззараживание поверхности и увеличивается срок хранения [3, 4].

Электрохимическая активация является одним из направлений электромембранной технологии, и ее сущность заключается в том, что жидкость, протекающая через диафрагменный электролизер, при воздействии постоянного электрического поля переходит в метастабильное (активированное) состояние с аномально высокими окислительными (у анолита) и восстановительными (у католита) свойствами.

Основными преимуществами электроактивированных растворов перед традиционно применяемыми химическими средствами является высокое антимикробное действие (на бактерии, вирусы, грибы, споры), низкая адаптивность, аллергенность и токсичность, экологическая чистота, физиологическая безвредность, биосовместимость.

Установки для производства электрохимически активированных растворов доступны к изготовлению в местных условиях, имеют низкую энергоемкость ($8...10~\mathrm{kBr.y/r}$), быструю окупаемость (до 1 года), относительно безопасны, не требуют специальных знаний и квалификации при обслуживании [2, 3].

Таким образом, при использовании для активации жидких сред технологических действий ультразвуковых колебаний и электрохимических процессов при электролизе можно существенно повысить эффективность традиционных технологических процессов при одновременном повышении качества конечного продукта, уменьшении энергоемкости и загрязненности среды.

Список использованной литературы

1. Донченко, Л.В. Безопасность пищевой продукции: учебник для СПО. В 2 ч. Ч. 1. / Л.В. Донченко, В.Д. Надыкта. – Москва: Юрайт, 2018. – 264 с.

- 2. Электротехнологии: пособие / И.Б. Дубодел и [др.] Минск: БГАТУ, 2014.-252c.
- 3. Корко, В.С. Эффекты электротехнологий в процессах мойки и обеззараживания плодоовощной продукции. / В.С. Корко, П.В. Кардашов, И.Б. Дубодел. Материалы V Всеукраинской НПК «Перспективы и тенденции развития конструкций и технического сервиса сельскохозяйственных машин и орудий», Житомирский агротехнический колледж, 2019г. С. 134–135.
- 4. Корко, В.С. Эффекты ультразвука в жидких средах / В.С. Корко, П.В. Кардашов, И.Б. Дубодел. Материалы Международной НПК «Техническое и кадровое обеспечение инновационных технологий в сельском хозяйстве», ч.1. Минск, БГАТУ, 2019г. С. 379–381.

УДК 631.531.011.3:53

ДИЭЛЕКТРИЧЕСКИЙ СЕПАРАТОР – ВЫСОКОЭФФЕКТИВНОЕ УСТРОЙСТВО ПОЛУЧЕНИЯ ОДНОРОДНЫХ ПАРТИЙ СЕМЯН

Е.А. Городецкая¹, канд. техн. наук, доцент, Т.А. Непарко¹, канд. техн. наук, доцент, Ю.К. Городецкий², инженер, Е.Т. Титова², канд. биол. наук, доцент, А.Д. Сыч¹, старший преподаватель ¹БГАТУ, г. Минск, Республика Беларусь ²НАН Беларуси, г. Минск

Аннотация. Получить чистые семена в виде пищевого ингредиента на механических устройствах практически невозможно. Предложено диэлектрическое сепарирующее устройство.

Abstract. It is almost impossible to obtain pure seeds as a food ingredient on mechanical devices. A dielectric separating device is proposed.

Ключевые слова: семена, просеивание, диэлектрическая сепарация.

Keywords: seeds, sifting, dielectric separation.

Введение

Получение чистых фракций семян из семенного вороха после обмолота — это необходимая операция для дальнейшего обращения с семенами. Выполняется она самыми разными приспособлениями, обзор которых приводим.

Основная часть

В мировой пищевой промышленности используются два метода разделения сыпучих продуктов: в движущемся потоке и метод рассева. Литературные исследования показали положительный результат пневмосепарирования смесей, схожих по составу с нашими семенами, на воздушном